УДК 544.726:54-43

КОНЦЕНТРИРОВАНИЕ ИОНОВ МАРГАНЦА (II) И ЖЕЛЕЗА (III) ИЗ ВОДНЫХ РАСТВОРОВ КАТИОНИТАМИ МАРКИ ТОКЕМ И КБ-2Э

Жаркова В.В., Бобкова Л.А.

ФГАОУ ВО «Национальный исследовательский Томский государственный университет», Томск, e-mail: petrovavalentina2012@mail.ru

В работе исследованы сорбционные свойства катионитов и избирательность по отношению к ионам Mn^{2+} и Fe^{3+} в равновесных и динамических условиях. Установлено, что иониты KБ-29-16, Токем-250, Токем-140 имеют широкий рабочий диапазон рН. Карбоксильные катиониты KБ-29-16, Токем-250 проявляют избирательность к ионам Mn^{2+} , а сульфокатионит Токем-140 – к Fe^{3+} (D ~ 10^2-10^4). Это, вероятно, связано со структурой катионитов, склонностью их к гидролизу и устойчивостью ионитных комплексов, выявленной методом ЭСДО спектроскопии. По выходным кривым сорбции Mn^{2+} и Fe^{3+} катионитами показано, что стационарный фронт сорбции формируется на небольшой высоте слоя ~ 3–4 см. Предложена реализация катионитов Токем-140, Токем-250 и KБ-29-16 при разработке тест-индикаторных трубок для определения Mn^{2+} и Fe^{3+} и в качестве фильтров очистки воды от ионов металлов.

Ключевые слова: сорбция, катиониты, ионы марганца (П) и железа (ПП), тест-индикаторные трубки

CONCENTRATION OF IONS OF MANGANESE (II) AND IRON (III) FROM WATER SOLUTIONS BY CATION EXCHANGERS TOKEM AND KB-2E

Zharkova V.V., Bobkova L.A.

Federal Autonomous Educational Institution of Higher Education «National Research Tomsk State University», Tomsk, e-mail: petrovavalentina2012@mail.ru

The present paper dwells upon the investigation of cation exchangers with respect to their sorption properties and selectivity concerning Mn^{2+} and Fe^{3+} ions. It has been specified that the ion exchangers KB-2E-16, TOKEM-250, TOKEM-140 possess a wide operating range of pH. Carboxyl cation exchangers KB-2E-16, TOKEM-250 display selectivity for Mn^{2+} ions whereas sulphocationites TOKEM-250 display selectivity for $Fe^{3+}(D \sim 10^2-10^4)$. This is probably related to the structure of cation exchangers, as well as to their propensity for hydrolysis and the general stability of ion-exchange complexes detected via ESDR spectroscopy. According to sorption curves of Mn^{2+} and Fe^{3+} ions by cation exchangers, the stationary sorption front is formed at a low layer height ~ 3 –4 cm. The authors suggest the strategy of implementing TOKEM-250 and KB-2E-16 cation exchangers in the process of test indicator tubes development for Mn^{2+} and Fe^{3+} determination and as filters used for removal of metal ions from water during its purification.

Keywords: sorption, cation exchangers, manganese (II) ions and iron (III) ions, test-indicator tubes

На территории Томской области расположено одно из крупнейших в мире Бакчарское месторождение железной руды. Вымывание ионов Mn²⁺ и Fe³⁺ из железосодержащих минералов приводит к превышению их предельно допустимой концентрации в питьевой воде. ПДК Mn^{2+} и Fe^{3+} составляет 0,1 и 0,3 мг/л соответственно [1]. Существует потребность контроля содержания ионов Mn²⁺ и Fe³⁺ в большом числе источников питьевой воды с последующей ее очисткой. Современные аналитические методы позволяют решить эту проблему с помощью простых и недорогих тест-систем для контроля качества воды самим потребителем во внелабораторных условиях (on-site) [2, 3]. Таким образом, актуальна как разработка новых способов очистки воды от ионов Mn^{2+} и Fe^{3+} так и их тест-определения. Эффективным материалом для этих целей могут служить малоизученные синтетические сорбенты – сульфо- и карбоксильные катиониты гелевой – Токем-140, макропористой – Токем-250, макросетчатой – КБ-2Э-16 структуры. Катиониты синтезированы Ке-

меровским ООО ПО «Токем». Сильнокислотный сульфокатионит марки Токем-140 является аналогом известного катионита КУ-2-8. Синтезирован на основе стирола и дивинилбензола (ДВБ) по двухступенчатой технологии, позволившей получить монозернистый сорбент с диаметром частиц $\sim (0.65 \pm 0.05)$ мм. Катионит может использоваться в широкой области рН, что важно при сорбции легко гидролизующихся ионов Fe³⁺. Карбоксильные катиониты макропористой – Токем-250 и макросетчатой – КБ-2Э-16 структуры синтезированы на основе полиакриловой кислоты и сшивающих агентов ДВБ и дивинилового эфира диэтиленгликоля (ДВЭДЭГ) соответственно. Основная часть исследований, представленных в литературе, связана с изучением сорбции двухзарядных катионов [4-6]. Менее изучено ионообменное поглощение трехзарядных катионов, особенно сильносшитыми карбоксильными катионитами. Имеющиеся в литературе сведения не дают представления о поглощении ионов из растворов с низкой концентрацией (порядка ПДК в природных водах).

Цель работы — исследование сорбционных свойств катионитов, их избирательности по отношению к ионам Mn^{2+} и Fe^{3+} в равновесных и динамических условиях для дальнейшего применения сорбентов.

Материалы и методы исследования

Исследование сорбционных свойств проводили в статических и динамических условиях на Nа-форме катионитов КБ-2Э-16, Токем-250 и H-форме Токем-140 из растворов хлоридов Fe^{3+} и Mn^{2+} с $pH \sim 4,5$ и I=0,1 (NaCl). Чистота использованных реактивов соответствовала марке ч.д.а. Сорбцию ионов в статических условиях изучали в интервале концентраций $(1\div6)\cdot10^{-3}$ ммоль/мл. Концентрацию Mn^{2+} и Fe^{3+} в равновесных растворах определяли спектрофотометрически по поглощению их комплексов с формальдоксимом и сульфосалициловой кислотой [7, 8] соответственно на спектрофотометре Π 3-5400уф «ЭКРОС». Время сорбции составляло 24 часа.

Динамику сорбции исследовали методом построения выходных кривых ионов. Скорость фильтрования раствора регулировали с помощью перистальтического насоса типа BT100-2J «Longerpump». Начальная концентрация ионов в растворах составляла $2\cdot 10^{-2}$ моль/л, ионная сила 0,1 (NaCl), pH \sim 4,5. Содержание Mn²+ и Fe³+ в порциях фильтрата определяли комплексонометрически. Выходные кривые представляли в координатах $C/C_{_{0}}=f(V_{_{\phi}})$, где $V_{_{\phi}}-$ объем раствора, прошедшего через колонку, $C/C_{_{0}}-$ отношение концентраций ионов в порции фильтрата и исходном растворе.

Электронные спектры диффузного отражения ионных форм катионитов регистрировали на спектрофотометре UV-2501 PC фирмы «Shimadzu». Катиониты насыщали ионами Mn^{2+} и Fe^{3+} из растворов с концентрацией 0,02 моль/л и рН 4,5 и 2,0 соответственно в течение 24 часов. Образцы исследовали во влажном состоянии, т.е. близком к состоянию ионов в растворе.

Результаты исследования и их обсуждение

Для установления рабочего диапазона рН ионитов было проведено потенциометрическое титрование их водородной формы раствором NaOH. Кривые титрования представлены на рис. 1.

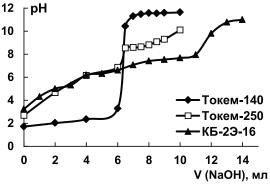


Рис. 1. Кривые титрования Н-формы катионитов Токем-140, Токем-250 и КБ-2Э-16

Ход кривых согласуется с различием в кислотности функциональных групп сорбентов. Рабочий диапазон рН катионитов Токем-140 и КБ-2Э-16, в котором проявляется максимальная емкость, шире, чем Токем-250, и составляет ~2–12 и 3–14 ед. соответственно.

Значения эффективных констант диссоциации функциональных групп (pK_a) катионитов рассчитаны с помощью уравнения Гендерсона — Гассельбаха:

$$pH = pK_a - n\lg(1 - \alpha)/\alpha,$$

где α — степень нейтрализации функциональных групп, n — параметр, связанный с изменением электростатической свободной энергии макромолекулы при ее нейтрализации. Полученные значения pK_a и соответствующие литературные данные для ионитов подобного типа приведены в табл. 1.

Таблица 1 Значения эффективных констант ионизации функциональных групп и параметра n катионитов

Ионит	pK_a	n	Примечание
Токем-140	2,17	_	_
Токем-250	6,59	1,29	_
КБ-2Э-16	6,70	2,40	_
КБ-2-20	7,10	_	[8]

Значения pK_a свидетельствуют о существенном различии кислотного характера функциональных групп сульфо- и карбоксильных катионитов. Сопоставление значений pK_a для карбоксильных катионитов различных марок (табл. 1) показывает, что КБ-2Э-16 и Токем-250 обладают более сильными кислотными свойствами по сравнению с их аналогом — сильносшитым катионитом КБ-2-20. Различия кислотных свойств карбоксильных ионообменников обусловлены их структурой.

Для характеристики избирательности поглощения Mn²⁺ и Fe³⁺ на Na-форме катионитов КБ-2Э-16, Токем-250 Н-форме Токем-140 были построены изотермы сорбции (рис. 2).

Изотермы ионов Mn²⁺ и Fe³⁺ имеют выпуклую форму, характерную для избирательного обмена. На кривых изотерм сорбции Mn²⁺ катионитами KБ-2Э-16 и Токем-250 отмечаются, хотя и не очень явные, точки перегиба. Ступенчатость изотерм может быть признаком существования в ионите нескольких типов функциональных групп с различной избирательностью к поглощаемым ионам [8]. Наибольшая крутизна начальных участ-

ков и выпуклость изотерм отмечается для катионита KБ-29-16. Это обусловлено повышенной избирательностью поглощения Mn^{2+} . Изотермы сорбции ионов Mn^{2+} и Fe^{3+} сульфокатионитом Токем-140 в изученном диапазоне концентраций практически линейны, что может объясняться энергетической однородностью сорбционных центров. Кривая сорбции Fe^{3+} расположена выше изотермы сорбции Mn^{2+} вследствие более высокой избирательности поглощения ионов железа (III). По

равновесным данным проведен расчет коэффициентов распределения (D) ионов Mn^{2+} и Fe^{3+} (табл. 2).

Таблица 2 Значения коэффициентов распределения $(D, \, \text{мл/r})$ ионов Mn^{2+} и Fe^{3+}

Ион	D,·10 ⁴				
	Токем-140	Токем-250	КБ-2Э-16		
Mn^{2+}	0,03	0,13	0,19		
Fe^{3+}	1,9	_	_		

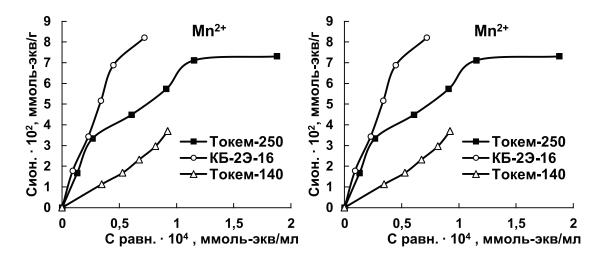


Рис. 2. Изотермы сорбции Mn^{2+} и Fe^{3+} на катионитах Токем-140, Токем-250 и КБ-2Э-16

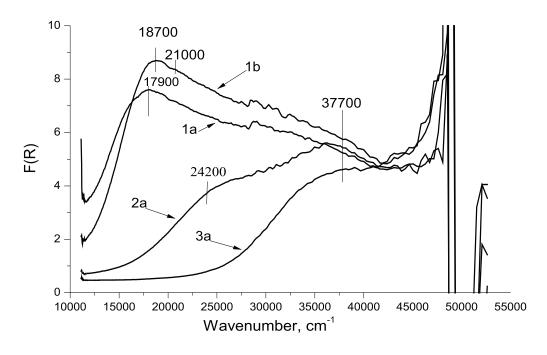


Рис. 3. Спектры ЭСДО образцов катионитов Токем-140 (1), Токем-250 (2), КБ-2Э-16 (3) содержащих ионы $a-Mn^{2+},\,b-Fe^{3+}$

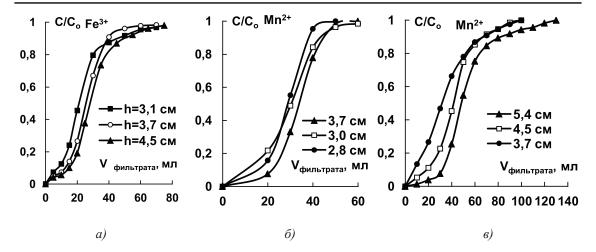


Рис. 4. Выходные кривые сорбции ионов Mn^{2+} и Fe^{3+} при различной высоте слоя катионитов Токем-140 $(a, \, 6)$, Токем-250 (b)

Порядок значений коэффициентов распределения (~104) свидетельствует о высокой избирательности поглощения Mn²⁺ и Fe³⁺. При этом карбоксильные катиониты Токем-250 и КБ-2Э-16 отличаются повышенным сродством к ионам Mn²⁺. Такой характер избирательности ионообменников согласуется с химической природой ионов. В соответствии со структурой валентного уровня (d^5) ионы Mn^{2+} имеют симметричное распределение электронной плотности, поэтому они проявляют сродство к кислородсодержащим лигандам - карбоксильным группам, а не к сульфогруппам, как в Токем-140 [9]. Катионит Токем-140 предпочтительнее сорбирует ионы Fe³⁺ по сравнению с Mn^{2+} , что, вероятно, связано с их большим зарядом и устойчивостью полученного соединения.

Для объяснения различий в избирательности сорбции ионов были зарегистрированы электронные спектры диффузного отражения (ЭСДО) металлсодержащих образцов катионитов КБ-2Э-16, Токем-250 и Токем-140 (рис. 3).

В спектрах ЭСДО марганецсодержащих образцов катионитов Токем-140 и Токем-250 отмечается присутствие полос поглощения 17900 см⁻¹ и 24200 см⁻¹, соответствующих *d-d*-переходам ионов Мп²⁺ в октаэдрической координации по кислороду. Для катионита КБ-29-16 такие полосы поглощения отсутствуют. Это может быть связано с большим количеством ассоциированных ионов Мп²⁺ в образцах катионитов. Координацию ионов позволяет определить присутствие широкой полосы поглощения в области 37700 см⁻¹, которая относится к ППЗ лиганд-металл ионов Мп²⁺ в октаэдрической координации по кислороду.

В спектре ЭСДО катионита Токем-140, содержащем Fe^{3+} , присутствуют полосы поглощения $18700~cm^{-1}$ и $21000~cm^{-1}$, соответствующие d-d-переходам катионов в тетраэдрической координации по кислороду. Образование устойчивой тетраэдрической структуры Fe^{3+} в катионите Токем-140 объясняет большую избирательность поглощения ионов по сравнению с Mn^{2+} .

Выбор сорбента для создания тестсистем, таких как индикаторная трубка, основывается на избирательности сорбции ионов и способности катионита формировать четкие хроматографические зоны в динамических условиях. В этом случае возможно получение линейной зависимости между длиной окрашенного слоя сорбента и концентрацией поглощаемых ионов. Образование зон связано с формированием стационарного фронта сорбции, поэтому его установление явилось одной из задач динамических исследований.

Для установления высоты слоя катионитов Токем-140, Токем-250 и КБ-2Э-16, на которой формируется стационарный фронт, была построена серия выходных кривых ионов Mn^{2+} и Fe^{3+} . Ход кривых показан на примере катионитов Токем-140 и Токем-250 (рис. 4).

Из рисунка видно, что стационарный фронт сорбции формируется на небольшой высоте слоя катионитов – 2,6÷3,7 см и переносится параллельно. Это согласуется с избирательностью поглощения ионов [10]. Выходные кривые сорбции на карбоксильных катионитах: макропористом Токем-250 и макросетчатом КБ-2Э-16 отличаются от сульфокатионита Токем-140 гелевой структуры меньшим размытием участков в начальной области. Форма выходных кривых на кар-

боксильных катионитах позволяет предположить, согласно [11], что процесс сорбции лимитируется внутренней диффузией ионов, так как сорбционный фронт размыт в верхнем участке слоя (где концентрация поглощаемых ионов высока), образуя «хвост». В случае сульфокатионита Токем-140 процесс контролируется смешанной диффузией, поскольку размытие фронта имеет место на обоих участках работающего слоя. Выходная кривая близка к симметричной S-образной форме. Сравнение кривых Mn²⁺ и Fe³⁺ при сорбции на Токем-140 особых отличий не выявило. Вероятно, механизм кинетики сорбции на катионитах Токем-250, КБ-2Э-16 и Токем-140 связан в первую очередь, с избирательностью поглощения ионов, а не структурой сорбентов.

Выводы

Установлено, что катиониты КБ-2Э-16, Токем-250, Токем-140 обладают широким рабочим диапазоном рН. Исследована избирательность сорбции ионов Mn²⁺ и Fe³⁺ катионитами. Коэффициенты распределения, рассчитанные по изотермам сорбции ионов Mn^{2+} и Fe^{3+} из разбавленных растворов $(10^{-4}-10^{-3} \ \text{моль/л})$, составляют $\sim 10^2-10^4$. Карбоксильные катиониты КБ-2Э-16, Токем-250 проявляют высокую избирательность к ионам Mn²⁺, а сульфокатионит Токем-140 – к Fe³⁺. Среди карбоксильных катионитов наибольшая избирательность поглощения Mn^{2+} отмечается на макросетчатом сорбенте КБ-2Э-16. Различия в избирательности, согласно ЭСДО спектрам солевых форм катионитов, связаны со структурой формирующихся ионитных комплексов металлов.

По выходным кривым сорбции ионов $\mathrm{Mn^{2+}}$ и $\mathrm{Fe^{3+}}$ катионитами показано, что стационарный фронт сорбции формируется на небольшой высоте слоя $\sim 3-4$ см. Механизм сорбции ионов является смешаннодиффузионным с высоким вкладом внутренней диффузии. Роль внутридиффузионной ста-

дии выше в случае карбоксильного катионита КБ-29-16 макросетчатой структуры.

Высокая избирательность катионитов к ионам Mn²⁺ и Fe³⁺, формирование стационарного хроматографического фронта ионов позволяет рекомендовать катиониты Токем-140, Токем-250 и КБ-2Э-16 для разработки тест-индикаторных трубок для определения ионов и в качестве фильтров очистки воды.

Работа выполнена при финансовой поддержке РФФИ (грант № 16-33-00374-мол а).

Список литературы

- 1. Другов Ю.С. Пробоподготовка в экологическом анализе: практическое руководство / Ю.С. Другов, А.А. Родин. М.: БИНОМ, 2009. 855 с.
- 2. Золотов Ю.А. Проблемы аналитической химии. Внелабораторный химический анализ / Ю.А. Золотов. М.: Наука, 2010. 536 с.
- 3. Золотов Ю.А. Сорбционное концентрирование микрокомпонентов из растворов. Применение в неорганическом анализе / Ю.А. Золотов, Г.И. Цизин, С.Г. Дмитриенко, Е.И. Моросанова. М.: Наука, 2007. 320 с.
- 4. Sorption of copper (II) from aqueous solutions on complexing ion exchangers and determination of copper by diffuse reflectance spectroscopy / O.N. Kononova [et al.] // Journal of Siberian Federal University. $-2009. \text{N}_{\text{2}} 2. \text{P.} 195-209.$
- 5. Чугунов А.С. Сравнительное исследование некоторых промышленно выпускаемых катионитов / А.С. Чугунов, А.Ф. Нечаев // Известия СПбГТИ(ТУ). -2014. -T. 54, № 28. -C. 20–24.
- 6. Zharkova V.V. Sorption of cobalt (II) and copper (II) ions by highly cross-linked carboxyl cation exchangers from natural waters with high salt background / V.V. Zharkova, L.A. Bobkova, C.A. Bektimirova and V.V. Kozik // Advanced Materials Research. 2015. Vol. 1085. P. 68–74.
- 7. Давыдова О.А. Инженерная защита окружающей среды: учеб. пособие / О.А. Давыдова, Е.С. Климов. Ульяновск: УлГТУ, 2010. С. 5–6.
- 8. Жаркова В.В. Динамическое концентрирование ионов Мп (II), Co (II), Ni (II), Cu(II) на сильносшитых карбоксильных катионитах и создание тест-систем для анализа питьевых вод: дис. ... канд. хим. наук. Томск, 2016. С. 43–53.
- 9. Спицин В.И. Неорганическая химия / В.И. Спицин, Л.И. Мартыненко. Ч. II. М.: Изд-во МГУ, 1994. 624 с.
- 10. Гельферих Ф. Иониты / Ф. Гельферих. М.: Изд-во ин. лит, 1962. 490 с.
- 11. Структура и свойства карбоксильного катионита КБ-2Э / Г.П. Вдовина [и др.] // Пласт. массы. 1987. № 8. С. 24—26.