УДК 633.2.032.2(633.2.03)+235.223

АЛЛОКАЦИЯ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ФИТОМАССЫ ГОРЦОВЫХ ЛУГОВ С ДОМИНИРОВАНИЕМ BISTORTA MAJOR GRAY СУБАЛЬПИЙСКОГО ПОЯСА ВЫСОКОГОРИЙ САЯН

Самбыла Ч.Н.

Убсунурский международный центр биосферных исследований Республики Тыва и СО РАН, Кызыл; Тувинский государственный университет, Кызыл, e-mail: Choigansam@mail.ru

В горцовых ценозах с доминированием *Bistorta major* Gray хр. Западного и Восточного Саян суммарный запас фитомассы варьирует от 1956,7 до 2960,8 г/м², напротив, запасы фитомассы (без учета мортмассы) стабильны (303,8-345,7 г/м²). Распределение фитомассы между фракциями надземной фитомассы неравномерно, что связано с особенностями мезорельефа исследованных хребтов. Несмотря на приуроченность горцовых лугов к местам с избыточным увлажнением, основная часть фитомассы концентрируется в подземной сфере, что сближает их с тундровыми сообществами высокогорий. Участие доминанта в надземной и подземной фитомассе значительно, составляя 47,4-52,6 и 48,8-66,4% соответственно, и сочетание этих черт можно признать характерной особенностью горцовых ценозов не только Саян, но и Алтае-Саянской горной области в целом.

Ключевые слова: аллокация (распределение), фитомасса, луга, сообщества, Западный и Восточный Саяны

ALLOCATION OF OVERGROUND AND UNDERGROUND PHYTOMASS OF BISTORTA MEADOWS WITH THE PREVAILING «BISTORTA MAJOR GRAY» OF SUBALPINE BELT OF SAYAN HIGHLANDS

Sambyla C.N.

International Ubsunur Centre for Biosphere Research Republic of Tuva, SB RAS, Kyzyl; Tuvan State University, Kyzyl, e-mail: Choigansam@mail.ru

The structure of phytomass of subalpine coenosis with the prevailing *«Bistorta major Gray»* at the West and the East Sayan has been studied. In the communities the combined stock of phytomass varies from 1956,7 to 2960,8 g/m², although the resources of biomass (excluding the mortmass) are pretty close (303,8–345,7 g/m²). The distribution of phytomass between grassy and moss factions is not unevenly that it is due to the ecological nature of mesorelief's investigated ranges. Despite the Bistorta (*Bistorta major*) meadows related to places with abundant moisture, the main part of phytomass is concentrated in the underground sphere that is approaching to the tundra coenosis. A participation of a dominance in overground and underground phytomass is significantly (47,4–52,6% and 48,8–66,4%, accordingly) that the combination of these traits it is possible to recognize the characteristic feature of Bistorta (*Bistorta major*) meadows coenoses of the Altai-Sayan mountain region.

Key words: allocation, phytomass, meadows, communities, the West and the East Sayan.

Горцовые луга – травяные сообщества с доминированием евразийского бореально-монтанного вида Bistorta major Gray – являются постоянным компонентом верхней части субальпийского пояса гумидных районов Алтае-Саянской горной области. В высокогорьях западной части Восточного Саяна горцовые луга представлены несколькими разновидностями, такими как змееголовниково-горцовые луга с мытником остроколосым, золотарниково-горцовые, борцово-горцовые [4, 5] и осоковогорцовые луга [7, 126], но в ценотическом отношении, по мнению В.П. Седельникова (1988), они ведут себя однотипно [8, 142]. Горцовые луга широко распространены по озерным котловинам, в зоне влияния холодного увлажнения от снежников, где комплекс экологических условий способствует оптимальному их развитию. В настоящее время горцовые ценозы с В. тајог являются одними из основных кормовых угодий для диких и домашних животных, их надземная часть охотно поедается ими до цветения [1, 62]. Следовательно, изучение их запасов фитомассы актуально для планирования и управления природными растительными ресурсами высокогорий Сибири в целом. Кроме того, эти луга являются источником ценного пищевого и лекарственного сырья. Например, местные жители Тувы в быту и в народной медицине используют не только корневища, листья, но и семена В. тајог. В народе В. тајог (высотой 40-50 см), произрастающий во влажных территориях, называют «Кошкар мыйыраа», а встречающийся в сухих высокогорьях - «Куске мыйыраа», среди которых в быту более предпочтителен последний [2, 20].

В настоящей статье рассматриваются результаты изучения особенностей аллокации надземной и подземной фитомассы в интересных и труднодоступных горцовых лугах субальпийского пояса высокогорий Западного и Восточного Саян.

Материалы и методы исследования

Исследования проводились в июле-августе 2009–2010 гг. в верховьях рек Кизира и Казыра хр. Крыжина Восточного Саяна (далее ВС) и в районе хр. Куртушибинский Западного Саяна (ЗС). В ценозах геоботанические описания и учет фитомассы проводились по стандартным методам в 10-кратной повторности, после высушивались до абсолютно сухого состояния. Более подробные сведения о методиках работы изложены нами в ранее опубликованных работах [6, 86].

Результаты исследования и их обсуждение

В исследованных районах формации горцовых лугов представлены осоково-горцовыми и мохово-горцовыми ассоциациями. Осоково-горцовые луга на северном макросклоне хр. Куртушибинский контактируют с ерниковыми тундрами (Betula rotundifolia) с примесью Pentaphylloides fruticosa и Salix glauca, на территории южного макросклона хр. Крыжина с юга на восток мохово-горцовые граничат с чемерицевыми (Veratrum lobelianum) и левзеевыми (Stemmacantha carthamoides) высокотравьями и молочаевыми лугами (Euphorbia pilosa), на севере – черничными пустошами, по сравнению с которыми они занимают пониженные элементы рельефа.

Рассмотрим особенности ценотической характеристики и запасы надземной (НФМ) и подземной (ПФМ) фитомасс исследованных лугов в отдельности.

Осоково-горцовые луга (В. major – Carex sabynensis – С. iljinii – С. aterrima – Polytrichum juniperinum – Pleurozium schreberi) небольшими участками встречаются на всем протяжении хребта ЗС. Запасы фитомассы определялись в районе озера Черное (52°48′55″ с.ш., 94°06′48,3″ в.д.), хр. Куртушибинский, на склоне юго-западной экспозиции крутизной 3–5°. Общее

проективное покрытие (ОПП) – 75–90%, средняя видовая насыщенность (СВН) 25 видов на 100 м², вертикальная структура (ВС) – одноярусная, высота растений (ВР) – 5-60 см. НФМ составляет $5\bar{1}6,2$ г/м², из них участие разнотравной фракции – 174,6 г/м² (57,5%) (таблица). Среди разнотравья доминирует B. *major* (его проективное покрытие $(\hat{\Pi}\hat{\Pi}) - 85\%$, $H\Phi M$ побегов и соцветий – 160.0 г/м^2 (91,6% от массы разнотравья и 52,6% от фитомассы)), изредка встречаются Euphorbia altaica, Viola altaica, (ПП – 1-2%, HФМ – 14,6 г/м²). Содоминируют Carex sabynensis, C. iljinii α C. aterrima (ПП – 5-10%, НФМ – $104,4 \, \text{г/м}^2$). В напочвенном покрове незначительно, но постоянно обнаруживаются Polytrichum juniperinum, Pleurozium schreberi u Dicranum acutifolium, их НФМ мала (7,8%). НММ не превышает $212,4 \, \text{г/м}^2$, более 96% ее части приходится ветоши трав. ПФМ составляет 1440,5 г/м², из них доля участия корневищ В. тајог достигает 48,8%. Аллокация подземных органов растений до 99,8% наблюдается на глубине почвы 8-11 см, от 12 см и ниже встречаются единичные корни, которые существенной роли в ПФМ не играют.

Мохово-горцовые луга (Bistorta major – Sanionia uncinata – Dicranum fuscescens – Poa sibirica – Anthoxanthum alpinum) на хр. ВС (1400-1418 м над ур. м.) формируются в средней части субальпийского пояса, по склонам различной экспозиции и крутизны (таблица). ОПП – 95–100%, CBH - 17 видов на 100 м², BC – одноярусная, ВР – 4–50 см. НФМ ценоза составляет 695,4 г/м², где участие разнотравной фракции из Aquilegia glandulosa, В. major, Omalotheca norvegica, Pedicularis incarnata, Viola altaica значительна ($\Pi\Pi - 90-95\%$, $H\Phi M - 221,9 \ r/m^2$). Среди них доминирует B. major (ΠΠ – 50–65 $^{\circ}$ %, HΦM – 163,8 $^{\circ}$ Γ/м² (73,8% от массы разнотравья и 47,4% от фитомассы), содоминирует моховая фракция, образованная из Sanionia uncinata и Dicranum fuscescens (ПП – 1–5%, НФМ – 99,4 г/м²). В НФМ участие злаковой (Роа sibirica, Anthoxanthum alpinum) и лишай-никовой (Cetraria islandica и Cladonia stellaris) фракций не превышает 3,8 и 2,6%

Структура фитомассы горцовых лугов Саян, г/м² (вес абсолютно сухой)

Сообщества	Осоково-горцовые	Мохово-горцовые
Хребет	Западный Саян	Восточный Саян
Высота над ур. м.	1550–1650 м	1400-1418 м
НФМ	$516,2 \pm 41,4$	$695,4 \pm 89,9$
ПФМ	$1440,5 \pm 54,7$	$2265,4 \pm 34,6$
Общая ФМ	1956,7	2960,8
НФМ:ПФМ	2,8:1,0	3,2:1,0

соответственно. На почве горцовых лугов формируется слой опада мощностью 2-3 см, г/м², их HMM -373,1 г/м². ПФМ составляет 2265,4 г/м², в том числе 1504,0 г/м² 66,4%) приходится на корневища доминанта. Общая аллокация подземных органов растений такова, что на глубине 0-10 см концентрируется до 90,7% их массы. На глубине 10-20 см обнаруживаются 210,7 г/м² корней растений средней и тонкой фракции, которые книзу вовсе исчезают.

Как видно из таблицы, осоково-горцовых и мохово-горцовых ценозах суммарный запас НФМ и ПФМ варьирует от 1956,7 до 2960,8 г/м², хотя запасы фитомассы (без учета НММ) довольно близки (345,7 и 303,8 г/м² соответственно). Если рассматривать НФМ, то ее аллокация между травяными (осоки, злаки и разнотравье) и моховой фракциями неравномерна, что связано с экологическими особенностями мезорельефа исследованных хребтов. Например, в горцовых лугах ВС, расположенного к северо-востоку от 3С, на величину НФМ влияет моховая фракция (99,4 Γ/M^2 , 28,7%), которая наряду с холодным подточным увлажнением способствует снижению доли участия злаков и осок в НФМ ценозов (суммарно 4.2% or H Φ M), a также способствует накоплению HMM до 349,7 г/м 2 , что в итоге отражается на количественных показателях НФМ в целом. На хр. 3С роль моховой фракции снижается (7,8%) и вовсе исчезают лишайники, напротив, увеличивается значимость осоковой фракции (34,3 %). Несмотря на варьирование фракций в НФМ ценозов, доля участия разнотравной фракции в НФМ остается стабильной (57,5 и 64,3 %), в том числе доминанта (160,0 и 163,8 г/м²). Довольно интересными являются величины НФМ изученных сообществ в сравнении с другими горными системами Алтае-Саянской горной области (АСГО). НФМ осоково-горцовых лугов с В. тајог $(O\Pi\Pi - 60-85\%, BP - 35-45 cm)$ xp. Capгая Кузнецкого Алатау, расположенного на северной границе АСГО, значительно выше и варьируют от 9 до 14 ц/га, из которых 35-40% формирует доминант, 20–25 % – Carex perfusca, 30–35 % – виды высокой встречаемости [7, 126]. В то же время для субальпийских лугов западной части Алашского нагорья (южнее Саян, т.е. северо-западная часть республики Тывы с умеренно континентальным климатом), в том числе лугов с доминированием *В. тајог* (ПП – 60%, ВР –

70 см) общая величина НФМ составляет 0,6-1,0 кг/м² [3, 192], наименьшие значения которых более близки с данными Саян. В исследованных лугах существенная разница наблюдается в ПФМ (таблица). Наибольшие запасы ПФМ характерны для мохово-горцовых лугов ВС $(2265,4 \text{ г/м}^2)$, из которых $1504,0 \text{ г/м}^2$ (66,4%) приходится на подземные органы *B. major*, что в 2,1 раза больше чем в ценозах 3С. Если прослеживать общую аллокацию НФМ и ПФМ и в тех и в других лугах, то видно, что их соотношение в 3С и ВС составляет 2,8:1,0 и 3,2:1,0 соответственно. Иная ситуация складывается в горцовых лугах Алашского нагорья, где ПФМ превышает НФМ в 5-7 раза [3, 192]. Схожим для горцовых лугов исследованных хребтов и Алашского нагорья является сосредоточение основной части корневой массы растений в слое почвы глубиной до 15-20 см.

Таким образом, в горцовых ценозах значительная аллокация НФМ наблюдается в разнотравной фракции (57,5-64,3 %). Несмотря на приуроченность горцовых лугов к местам с избыточным увлажнением, основная часть фитомассы концентрируется в подземной сфере, что сближает их с тундровыми сообществами высокогорий. Значительные запасы подземных органов растений наблюдаются в мохово-горцовых лугах Восточного Саяна. Участие доминанта в НФМ и ПФМ исследуемых ценозов значительно, составляя 47,4-52,6 и 48,8-66,4% соответственно, и сочетание этих черт можно признать характерной особенностью горцовых ценозов не только Саян, но и Алтае-Саянской горной области. Видимо, ценотиоптимум, способствующий формированию значительных запасов НФМ и ПФМ горцовых лугов, зависит от условий мезорельефа хребтов и климата, последний из которых определяется географическим положением горных систем относительно влажных воздушных масс.

Список литературы

- 1. Александрова В.Д. Кормовая характеристика растений Крайнего Севера. Л.-М.: Главсевморпути, $1940.-95~\mathrm{c}.$
- 2. Бартан О.О. Тувинские национальные блюда и лекарственные растения (на тувинском языке). – Кызыл, 1997. – 143 с.
- 3. Гуркова Е.А. Высокогорные луга Тувы // Состояние и освоение природных ресурсов Тувы и сопредельных регионов Центральной Азии. Геоэкология природной

среды и общества. – Кызыл: ТувИКОПР СО РАН, 2002. – С. 191–197.

- 4. Красноборов И.М. Растительность высокогорий Западного Саяна // Растительные богатства Сибири. Новосибирск: Наука, 1971а. С. 249–267.
- 5. Красноборов И.М. Эколого-фитоценотические особенности некоторых формаций высокогорной растительности Западного Саяна // Геоботанические исследования в Западной и Средней Сибири. Новосибирск: Наука. Сиб. отд-ние, 19716. С. 99–120.
- 6. Самбыла Ч.Н. Лишайники и мхи в запасе надземной фитомассы тундровых сообществ высокогорий Тувы // Известия Самарского научного центра РАН. 2014. Т. 16. № 5. С. 86–92.
- 7. Седельников В.П. Флора и растительность высокогорий Кузнецкого Алатау. Новосибирск: Наука. Сиб. отд-ние, 1979. 168 с.
- 8. Седельников В.П. Высокогорная растительность Алтае-Саянской горной области. –Новосибирск, 1988. 223 с.

References

- 1. Aleksandrova V.D *Forage characteristics of plants of the far North.* Leningrad-Moscow: Glavsevmorputi publ., 1940, 95 p.
- 2. Bartan O.O. Tuvan national food and medicinal plants (on the Tuvan language). Kyzyl, 1997, $143\ p.$
- 3. Gurkova E.A. High upland meadows of Tuva // The condition and development of natural resources of Tuva and adjacent regions of Central Asia. Geo-ecology of the natural envi-

- ronment and society. Kyzyl: TuvIKOPR SO RAN publ., 2002, pp. 191–197.
- 4. Krasnoborov I.M. *The vegetation of the Western Sayan mountains* // *Vegetation riches of Siberia*. Novosibirsk: Nauka publ., 1971, pp. 249-267.
- 5. Krasnoborov I.M. Ecological-phytocoenotic features of some formations of the Alpine vegetation of the Western Sayan mountains // Geobotanical studies in Western and Middle Siberia. Novosibirsk: Nauka publ., Siberian branch, 1971, pp. 99–120.
- 6. Sambyla, Ch. N. Lichens and mosses in stock of the overground phytomass in tundra communities of the highlands of Tuva. Izvestiya Samarskogo nauchnogo tsentra RAN publ., 2014, Vol. 16, no. 5, pp. 86–92.
- 7. Sedelnikov V.P. Flora and vegetation of the high mountains of Kuznetsk Alatau. Novosibirsk: Nauka publ., Siberian branch, 1979, 168 p.
- 8. Sedelnikov V.P. Alpine vegetation of the Altai-Sayan mountain region. Novosibirsk: 1988, 223 p.

Рецензенты:

Курбатская С.С., д.г.н., профессор, директор Убсунурского международного центра биосферных исследований Республики Тыва, г. Кызыл;

Сагды Ч.Т., д.б.н., профессор кафедры педагогики и методики дошкольного и начального образования, Тувинский государственный университет, г. Кызыл.