УДК 663.915

ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ДЕФОРМИРОВАННОГО МАГНИТНОГО ПОЛЯ В РАБОЧЕМ ОБЪЕМЕ ЭЛЕКТРОМАГНИТНЫХ МЕХАНОАКТИВАТОРОВ С МАГНИТООЖИЖЕННЫМ СЛОЕМ РАЗМОЛЬНЫХ ЭЛЕМЕНТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ

Беззубцева М.М., Ружьев В.А., Волков В.С.

ФГБОУ ВПО «Санкт-Петербургский государственный аграрный университет», Санкт-Петербург, e-mail: mysnegana@mail.ru

В статье представлены результаты решения задачи определения деформированного магнитного поля в рабочем объеме электромагнитных механоактиваторов цилиндрических конструкций с магнитоожиженным слоем размольных ферротел цилиндрической формы. Решение уравнения Лапласа получено в виде суммы потенциалов простых слоев. Намагничиваемые стержни (ферромагнитные размольные элементы цилиндрической формы) формализованы токовыми слоями. Показано, что с физической точки зрения безразлично, рассматривать ли намагничиваемые стержни или токовые слои, расположенные на границе стержней. Рассмотрено поведение магнитного поля вблизи границы *k*-го стержня. Составлена система линейных интегральных уравнений, в результате решения которой определен потенциал для любой точки плоскости, перпендикулярной осям стержней, что позволяет определять деформированное магнитное поле и решать задачи определения сил и моментов, действующих на ферромагнитные размольные элементы (стержни) в рабочем объеме электромагнитных механоактиваторов цилиндрических конструкций при различных коэффициентах его объемного заполнения ферромагнитной составляющей.

Ключевые слова: магнитоожиженный слой, диспергирующее усилие, деформированное магнитное поле, размольные элементы цилиндрической формы

THE THEORETICAL STUDIES OF DEFORMED MAGNETIC FIELD IN THE WORKING VOLUME OF ELECTROMAGNETIC MECHANICAL ACTIVATORS WITH MAGNETIC LIQUEFIED LAYER OF GRINDING FERROMAGNETIC BODY HAVING A CYLINDRICAL SHAPE

Bezzubtseva M.M., Ruzhev V.A., Volkov V.S.

St.-Peterburg agrarian university, St.-Peterburg, e-mail: mysnegana@mail.ru

In the article there are results of the decision of task consisting in determining of deformed magnetic field in the working volume of electromagnetic mechanical activators of cylindrical shape with magnetic liquefied layer of grinding ferromagnetic body having a cylindrical shape. The decision of Laplas equation is a sum of the potentials of simple layers. Magnetized centers (ferromagnetic grinding elements with cylindrical shape) were formalized by current layer. This labor shows that within a physical standpoint it doesn't matter for considering either magnetized centers or current layer on the centers borders. There was considered the action near the border of every layer. There was the system of integral linear equations, whose solution allowed to determine the potential for any point in the plane, that perpendicular to the axes of centers, and it was a way of determining of deformed magnetic field allows to solve tasks of determining forces and momentums acting on ferromagnetic grinding elements (centers) in working volume of electromagnetic mechanical activators of cylindrical shape with various factors connected with it's filling of ferromagnetic component.

Keywords: magnetivity layer, dispersing effort, strain magnetic field, the grinding elements of the cylindrical form

Определение силового взаимодействия между размольными ферроэлементами цилиндрической формы сводится к задаче определения сил и моментов, действующих на систему намагниченных стержней, размещенных в магнитном поле рабочего объема электромагнитного механоактиватора (ЭММА) [1-6]. При внесении стержней в невозмущенное магнитное поле происходит искривление магнитных силовых линий, их преломление на границах стержней. В результате возникает напряженное состояние поля, которое проявляется в силовом воздействии на стержень. Поэтому задача об определении сил и моментов, действующих на стержень со стороны деформированного магнитного поля в рабочем объеме ЭММА цилиндрических конструкций [7–11], распадается на две задачи:

1. Определение деформированного магнитного поля.

2. Определение сил и моментов, действующих на стержень со стороны поля.

Первая задача решается независимо от второй. В статье представлены результаты решения задачи определения деформированного магнитного поля в рабочем объеме ЭММА цилиндрических конструкций с магнитоожиженным слоем размольных ферротел цилиндрической формы.

Целью данной работы является решение задачи определения деформированного магнитного поля в рабочем объеме электромагнитных механоактиваторов

цилиндрических конструкций с магнитоожиженным слоем размольных ферротел цилиндрической формы.

Материал и методы исследований

Предметом исследований является магнитное поле в рабочем объеме электромагнитных механоактиваторов, деформированное магнитоожиженным слоем ферротел цилиндрической формы.

Результаты исследования и их обсуждение

Приняты следующие основные положения: стержни (размольные ферроэлементы) имеют одинаковую цилиндрическую форму с окружностью радиуса r = 1 в сечении; оси стержней параллельны; стержни изготовлены из одного и того же намагничиваемого материала с магнитной проницаемостью μ и пренебрежимо малой коэрцитивной силой; стержни находятся во внешнем магнитном поле, вектор напряжеуности которого ортогонален осям стержней; вектор напряженности невозмущенного поля параллелен оси *OY*.

Исследования выполнены в абсолютной системе координат, ось которой направлена параллельно осям стержней. Индукция невозмущенного магнитного поля имеет вид $B = (B_0, 0, 0)$. Картина возмущенного магнитного поля будет одна и та же в плоскостях, параллельных плоскости ОХҮ. В рассматриваемом случае векторный магнитный потенциал имеет всего лишь одну, отличную от нуля, компоненту $A_{z}: A = (0, 0, A_{z})$. Зная векторный магнитный потенциал, определяемый из выражения B = rot A, можно найти индукцию магнитного поля В в любой точке рабочего объема ЭММА. При этом векторный магнитный потенциал и все его компоненты в области, не занятой точками, гармоничен, т.е. удовлетворяет уравнению Лапласа

$$\Delta A_{z} = 0, \qquad (1)$$

(4)

где Δ – оператор Лапласа.

Будем искать решение уравнения (1) в виде суммы потенциалов простых слоев с неизвестными плотностями

$$A_{Z}(P) = \frac{1}{2\pi} \sum_{i=1}^{n} \oint_{C_{1}} \sigma_{i}(\Omega) \ln \frac{1}{R_{i}(P_{i}\Omega)} ds - B_{0}x, \qquad (2)$$

где n – число стержней; C_i – сечение *i*-го стержня плоскостью z = 0; P – точка плоскости *XOY*; Ω – точка, лежащая на C_i ; R_i (P,Ω) – расстояние между точками P и Ω ; $\sigma_i(\Omega)$ – плотность *i*-го простого слоя; B_0x – потенциал невозмущенного магнитного поля.

Если $A = (0,0, -B_0 x)$, то $B = \text{rot } A = (0, B_0, 0)$. Намагничиваемые стержни заменяем токовыми слоями с плотностями $\sigma_i(\Omega)$ [1].

Рассмотрим поведение магнитного поля вблизи границы *k*-го стержня. Для этого перепишем формулу (1), выделив потенциал *k*-го стержня

$$A_{z}(P) = \frac{1}{2\pi} \oint_{CK} \sigma_{K}(\Omega) \ln \frac{1}{P_{K}(P,\Omega)} ds + \tilde{A}_{K}(P); \qquad (3)$$

$$\check{A}_{K}(P) = \frac{1}{2\pi} \sum_{i=1 \atop i \neq K}^{n} \oint_{C_{i}} \sigma_{i} \left(\Omega \frac{1}{R_{i}(P,\Omega)} \right) ds - B_{0}x.$$

где

В дальнейшем будем полагать с B₀ = 1. т

⁰ Известно, что на границе двух сред с различными магнитными проницаемостями остаются непрерывными нормальная составляющая магнитной индукции и касательная составляющая напряженности магнитного поля [12].

Выражение для вектора В в цилиндрической системе координат имеет вид

$$B = rotA = \left(B_n, B_{\tau}, B_z\right) = \begin{bmatrix} \frac{n}{d} & \frac{\tau}{1} & \frac{\tau}{d} \\ \frac{dr}{0} & r & \frac{d}{0} & \frac{d}{dz} \\ 0 & 0 & \frac{d}{z} \end{bmatrix},$$
(5)

где n, τ и k – орты системы координат.

$$\prod_{\substack{\sigma \in \mathcal{T}OMy \\ B_z = 0.}} B_n = \frac{1}{r} \frac{dA_z}{d\phi}; \quad B_\tau = -\frac{dA_z}{d_r};$$

Рассмотрим систему координат с центром, совпадающим с центром сечения k-го стержня. Тогда точки, принадлежащие сечению k-го стержня, будут иметь координаты (соs ϕ , sin ϕ), а точки, принадлежащие

сечению *i*-го стержня $(i \neq k)$, будут иметь координаты $(P_{ik} \cos \alpha_i + \cos \psi_i, P_{ik} \sin \alpha_i + \sin \psi_i)$, где $P_{ik} u \alpha_i -$ координаты центра сечения стержня.

Направления нормали в точках сечения *k*-го стержня совпадают с его радиусом

$$B_{\tau} = -\frac{dA_{z}}{dr}.$$
 (6)

Подставляя в эту формулу выражение (4), найдем

$$B_{\tau}(r,\varphi) = -\frac{r}{2\pi} \int_{0}^{2\pi} \sigma_{K}(\psi) \frac{d}{dr} \ln \frac{1}{R_{K}(r,\varphi,\psi)} d\psi - \frac{d\tilde{A}_{z}}{dr}, \qquad (7)$$

где

 $\frac{d\tilde{A}_{z}}{dr} = \frac{1}{2\pi} \sum_{i=1}^{n} \int_{0}^{2\pi} \sigma_{i}\left(\psi\right) \frac{d}{dr} \ln \frac{1}{R_{i}\left(r,\varphi,\psi\right)} d\psi - \cos\varphi.$ (8)

Зафиксируем в формуле (8) угол φ и будем приближать *r* к единице (радиус *k*-го сечения) снаружи стержня и изнутри. При этом, как известно [12], нормальная производная простого слоя терпит разрыв. Обозначим через $B_{\tau e}$ и $B_{\tau i}$ пределы, к которым стремится B_{τ} при стремлении *r* к единице снаружи и изнутри. Получим [12]

$$B_{\tau e} = \frac{1}{2} \sigma_{K}(\varphi) - \frac{1}{2\pi} \int_{0}^{2\pi} \sigma_{K}(\psi) \frac{d}{dr} \ln \frac{1}{R_{K}(r,\varphi,\psi)} d\psi - \frac{dA_{z}}{dr}; \qquad (9)$$

$$B_{\tau i} = -\frac{1}{2}\sigma_{K}\left(\varphi\right) - \frac{1}{2\pi}\int_{0}^{2\pi}\sigma_{K}\left(\psi\right)\frac{d}{dr}\ln\frac{1}{R_{K}\left(r,\varphi,\psi\right)}d\psi - \frac{dA_{z}}{dr}.$$
(10)

Нетрудно показать, что

Из рисунка а следует, что

$$\frac{d}{dr}\ln\frac{1}{R_{K}\left(\varphi,\psi\right)}=\frac{\cos\left(r,R_{K}\right)}{R_{K}}.$$

Известно [12], что $\int_{0}^{2\pi} \sigma_{K}(\psi) d\psi = 0$.. Следовательно, из формул (9) и (10) получим

$$B_{\tau e} = \frac{1}{2} \sigma_{\kappa} \left(\phi \right) - \frac{dA_{z}}{dr}; \qquad (11)$$

$$B_{\tau i} = \frac{1}{2} \sigma_{\kappa} \left(\varphi \right) - \frac{dA_{z}}{dr}.$$
(12)

К решению интегральных уравнений относительно неизвестных функций: а – стержень в рабочем объеме ЭММА; б – два стержня в рабочем объеме ЭММА

Касательная составляющая напряженности магнитного поля на границе *k*-го стержня остается непрерывной. Следовательно,

$$B_{\tau e} = \frac{1}{\mu} B_{\tau i} \tag{13}$$

Подставляя в выражение (13) формулы (11) и (12), найдем

$$\sigma_{\kappa}\left(\varphi\right) - 2\frac{\mu - 1}{\mu + 1}\frac{d\tilde{A}_{z}}{dr} = 0$$
(14)

или в развернутом виде

$$\sigma_{\kappa}(\varphi) - \frac{1}{\pi} \frac{\mu - 1}{\mu + 1} \sum_{i=1 \ (i \neq k)}^{n} \int_{0}^{2\pi} \sigma_{i}(\psi) \frac{d}{dr} \ln \frac{1}{R_{i}(r, \varphi, \psi)} d\psi + 2 \frac{\mu - 1}{\mu + 1} \cos \varphi = 0,$$
(15)

где *k* = 1, ..., *n*.

Система (15) является системой линейных интегральных уравнений относительно неизвестных функций $\sigma_i(\phi)$.

Для решения системы линейных интегральных уравнений (15) попытаемся аппроксимировать ядра этой системы вырожденными. Напомним, что ядро называется вырожденным, если оно представимо в виде суммы произведений функций, каж-

дая из которых зависит только от одной переменной.

Как и раньше, поместим начало координат в центр сечения k-го стержня. Тогда координаты точек, лежащих на окружности сечения *k*-го стержня, будут

$$(r_K \cos \varphi_K, r_K \sin \varphi_K).$$
 (16)

Координаты точек, лежащих на окружности сечения *j*-го стержня, имеют вид

$$(C_{Kj}\cos\alpha_{Kj} + r_j\cos\phi_j, C_{Kj}\sin\alpha_{Kj} + r_j\sin\phi_j), \qquad (17)$$

где C_{k_i} – расстояние между центрами сечений k-го и j-го стержней; α_{k_j} – угол, показанный на рисунке б.

 $E_{Kj} = \frac{1}{C_{Kj}}.$

Для ядра *К*_{*ij*} имеем следующее выражение:

 $K_{ij} = \frac{d}{dr_i} \ln \frac{1}{R_{ii}} = \frac{d}{dr_i} \ln \frac{1}{\tilde{R}_{ii}}.$ (20)

Расстояние R_{kj} между точками, ле-жащими на окружностях сечений *k*-го и *i*-го стержней, имеет вид

$$R_{Kj}^2 = C_{Kj}^2 \, \tilde{R}_{Kj}^2, \tag{18}$$

где
$$ilde{R}^2_{Kj} = 1 +$$

 $2E_{Kj}\left[r_{j}\cos\left(\alpha_{Kj}-\varphi_{j}\right)-r_{K}\cos\left(\alpha_{Kj}-\varphi_{j}\right)\right]+2E_{Kj}^{2}\sin\frac{\varphi_{K}-\varphi_{j}}{2};$ (19)Для параметра E_{ij} имеем следующую очевидную оценку:

$$0 < E_{ii} \le 1/2.$$
 (21)

Разложим ядро K_{ij} в ряд по степеням параметра E_{ij}

$$K_{ij} = E_{ij} \cos\left(\alpha_{ij} - \varphi_i\right) - E_{ij}^2 \left[\cos 2\left(\alpha_{ij} - \varphi_i\right) + \cos\left(2\alpha_{ij} - \varphi_i - \varphi_j\right)\right] + \dots$$
(22)
y соотношения
$$\tilde{K}_{ij} = -E_{ij}^2 \cos\left(2\alpha_{ij} - \varphi_j - \varphi_j\right).$$
(24)

Ввиду соотношения

$$\int_{0}^{\pi} \sigma_{j}(\Psi) d\Psi = 0, \qquad (23)$$

интерес представляет только третье слагаемое в формуле (22), которое обозначим через K_{ii}

Система линейных интегральных уравнений (15) теперь может быть переписана в следующем виде

$$\sigma_{K}(\varphi) + \frac{1}{\pi} \sum_{i=1}^{n} E_{Ki}^{2} \int_{0}^{2\pi} \sigma_{i}(\psi) \cos(2\alpha_{i} - \varphi - \psi) d\psi + 2\chi \cos\varphi = 0; \qquad (25)$$
$$\chi = \frac{\mu - 1}{\mu + 1}; \quad E_{Ki} = E_{iK}; \quad E_{Ki} = E_{iK}, \quad \alpha_{Ki} = \pi + \alpha_{iK},$$

где $k = 1, ..., n_4$.

Систему (25) необходимо дополнить следующими соотношениями

$$C_{jK}^{2} = C_{iK}^{2} + C_{ij}^{2} - 2C_{iK} C_{ij} \cos(\alpha_{iK} - \alpha_{Kj});$$

$$tg \alpha_{jK} = \frac{C_{iK} \sin \alpha_{iK} + C_{ij} \sin \alpha_{ij}}{C_{iK} \cos \alpha_{iK} + C_{ij} \cos \alpha_{ij}},$$

где i = 1, ..., n; j = 1, ..., n.

Заключение

В результате найдены неизвестные плотности простых слоев $\sigma_i(\varphi)$ (i = 1,...n)и определен потенциал $A_i(P)$ для любой точки Р плоскости, перпендикулярной осям стержней, что позволяет определить деформированное магнитное поле и решить задачу определения сил и моментов, действующих на ферромагнитные размольные элементы в рабочем объеме ЭММА цилиндрических конструкций при различных коэффициентах его объемного заполнения ферромагнитной составляющей.

Список литературы

1. Беззубцева М.М. Электромагнитные измельчители для пищевого сельскохозяйственного сырья Теория и технологические возможности: дис. ... д-р. техн. наук: 05.20.02. – СПб., 1997. – 496 с.

2. Беззубцева М.М., Волков В.С. Прикладная теория электромагнитной механоактивации // Известия Международной академии аграрного образования. – 2013. – Т.З. № 16. – С. 93–96.

3. Беззубцева М.М., Волков В.С., Зубков В.В. Исследование аппаратов с магнитоожиженным слоем // Фундаментальные исследования. – 2013. – № 6–2. – С. 258–262.

4. Беззубцева М.М. Энергоэффективный способ электромагнитной механоактивации // Международный журнал экспериментального образования. – 2012. – № 5. – С. 92–93.

5. Беззубцева М.М., Волков В.С. Исследование энергоэффективности дискового электромагнитного механоактиватора путем анализа кинетических и энергетических закономерностей // Фундаментальные исследования. – 2013. – № 10–9. – С. 1899–1903.

6. Беззубцева М.М., Волков В.С. Теоретические исследования электромагнитного способа механоактивации // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 5. – С. 72–74.

7. Беззубцева М.М., Волков В.С. Исследование строения магнитного поля электромагнитных механоактиваторов (ЭММА) // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 12. – С. 90–91.

8. Беззубцева М.М., Мазин Д.А., Зубков В.В. Исследование коэффициента объемного заполнения ферромагнитной составляющей в аппаратах с магнитоожиженным слоем // Известия Санкт-Петербургского государственного аграрного университета. – 2011. – № 23. – С. 371–376.

9. Беззубцева М.М., Волков В.С. Исследование режимов работы электромагнитных механоактиваторов // Фундаментальные исследования. – 2013. – № 8. – С. 109–110.

10. Беззубцева М.М., Волков В.С. Исследование физико-механических процессов в магнитоожиженном слое феррочастиц // Фундаментальные исследования. – 2014. – № 1–0. – С. 13–17.

11. Беззубцева М.М., Волков В.С., Губарев В.Н. Способ диагностики загрязненности технологических сред ферропримесями // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 1. – С. 60–61.

12. Тамм И.Е. Основы теории электричества. – М.: Наука, 1989. – 504 с.

References

 Bezzubceva M.M. Jelektromagnitnye izmel'chiteli dlja pishhevogo sel'skohozjajstvennogo syr'ja Teorija i tehnologicheskie vozmozhnosti: dis. ... d-r. tehn. nauk: 05.20.02. SPb., 1997. 496 p.

2. Bezzubceva M.M., Volkov V.S. Prikladnaja teorija jelektromagnitnoj mehanoaktivacii // Izvestija Mezhdunarodnoj akademii agrarnogo obrazovanija. 2013. T.3. no. 16. pp. 93–96.

3. Bezzubceva M.M., Volkov V.S., Zubkov V.V. Issledovanie apparatov s magnitoozhizhennym sloem // Fundamental'nye issledovanija. 2013. no. 6–2. pp. 258–262.

4. Bezzubceva M.M. Jenergojeffektivnyj sposob jelektromagnitnoj mehanoaktivacii // Mezhdunarodnyj zhurnal jeksperimental'nogo obrazovanija. 2012. no. 5. pp. 92–93.

5. Bezzubceva M.M., Volkov V.S. Issledovanie jenergojeffektivnosti diskovogo jelektromagnitnogo mehanoaktivatora putem analiza kineticheskih i jenergeticheskih zakonomernostej // Fundamental'nye issledovanija. 2013. no. 10–9. pp. 1899–1903.

6. Bezzubceva M.M., Volkov V.S. Teoreticheskie issledovanija jelektromagnitnogo sposoba mehanoaktivacii // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2012. no. 5. pp. 72–74.

7. Bezzubceva M.M., Volkov V.S. Issledovanie stroenija magnitnogo polja jelektromagnitnyh mehanoaktivatorov (JeM-MA) // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2012. no. 12. pp. 90–91.

8. Bezzubceva M.M., Mazin D.A., Zubkov V.V. Issledovanie kojefficienta ob#emnogo zapolnenija ferromagnitnoj sostavljajushhej v apparatah s magnitoozhizhennym sloem // Izvestija Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. 2011. no. 23. P. 371–376.

9. Bezzubceva M.M., Volkov V.S. Issledovanie rezhimov raboty jelektromagnitnyh mehanoaktivatorov // Fundamental'nye issledovanija. 2013. no. 8. pp. 109–110.

10. Bezzubceva M.M., Volkov V.S. Issledovanie fiziko-mehanicheskih processov v magnitoozhizhennom sloe ferrochastic // Fundamental'nye issledovanija. 2014. no. 1–0. pp. 13–17.

11. Bezzubceva M.M., Volkov V.S., Gubarev V.N. Sposob diagnostiki zagrjaznennosti tehnologicheskih sred ferroprimesjami // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2014. no. 1. pp. 60–61.

12. Tamm I.E. Osnovy teorii jelektrichestva. M.: Nauka, 1989. 504 p.

Рецензенты:

Карпов В.Н., д.т.н., профессор Института технических систем, сервиса и энергетики, г. Пушкин;

Ракутько С.А., д.т.н., заведующий лабораторией энергоэффективных электротехнологий, ГНУ СЗ НИИМЭСХ Россельхозакадемии, г. Санкт-Петербург.

Работа поступила в редакцию 18.04.2014.