УДК 615.322

ФИЛЬТРАЦИОННАЯ ЭКСТРАКЦИЯ КАК СПОСОБ ОПТИМИЗАЦИИ ЭКСТРАКЦИОННОГО ПРОЦЕССА

Ким В.Э., Коновалов Д.А., Степанова Э.Ф.

Пятигорский медико-фармацевтический институт — филиал ГБОУ ВПО ВолгГМУ Минздрава России, Пятигорск, e-mail: e.f.stepanova@mail.ru

В статье приведен обзор перспектив применения фильтрационной экстракции в современной фармацевтической практике. На модели полученного извлечения шлемника байкальского представлен спектр технологических задач, которые можно решить с помощью фильтрационной экстракции: сокращение длительности экстракционного процесса (в 5–10 раз); увеличение эффективности извлечения БАВ (на 20–50%); получение более качественных извлечений за счет ускорения процесса извлечения. Очевидны также преимущества процесса, заключающиеся в экономии производственных площадей и возможности механизации ряда трудоемких стадий. Также показана роль отдельной технологической операции, — вальцевания, позволяющей механизировать процессы: загрузка в экстрактор, равномерность укладки слоя, взаимодействие с экстрагентом, регенерация остаточного экстрагента из истощенного растительного материала, механизация выгрузки с последующей переработкой шрота во вторичные хозяйственно ценные продукты.

Ключевые слова: фильтрационная экстракция, шлемник байкальский, экстракционный процесс, вальцевание

FILTRATIONAL EXTRACTION AS WAY OF OPTIMIZATION OF EXTRACTION PROCESS

Kim V.E., Konovalov D.A., Stepanova E.F.

Pyatigorsk Medical and Pharmaceutical Institute, Pyatigorsk, e-mail: e.f.stepanova@mail.ru

In article the review of prospects of application of filtrational extraction is provided in modern pharmaceutical practice. On model of the received extraction of a Baikal skullcap the range of technological tasks which can be solved by means of filtrational extraction is presented: reduction of duration of extraction process (at 5–10 times); increase in efficiency of extraction of biologically active agents (for 20–50%); receiving better extraction the account of acceleration of process of extraction. Also the advantages of process consisting in economy of floor spaces and possibility of mechanization of a number of labor-consuming stages are obvious. The role of separate technological operation – rolling, allowing to mechanize processes is also shown: loading in an extractor, uniformity of laying of a layer, interaction with ekstragenty, regeneration of a residual ekstragent from the exhausted plant material, mechanization of unloading with the subsequent processing of meal in valuable products secondary economic.

Keywords: filtrational extraction, Baikal skullcap, extraction process, rolling

При получении фитопрепаратов различной степени очистки роль технологических этапов значительна. Учитывая развитие coвременных фармпроизводств, их оптимизация представляется как очень значимый технологический цикл, и особенно это касается получения фитопрепаратов. Создание фитопрепаратов включает ряд технологических приемов, которые, несомненно, нуждаются в совершенствовании: наиболее востребованы усовершенствованные технологические этапы для экстракционных процессов, которые по важности и производственному объему доминируют при получении фитопрепаратов различной сложности [11, 12]. И здесь вполне уместны представления об экстракционном процессе как комплексной структуре, включающей смачивание растительного материала экстрагентом, растворение суммы экстрактивных веществ и вытеснение концентрированных растворов непрерывным потоком экстрагента. Поэтому совершенствование экстракции как суммы технологических операций может и должно, на наш взгляд, проходить в рамках фильтрационной экстракции.

Целью наших исследований являлись вопросы унификации характера процесса измельчения сырья корней шлемника байкальского, подбор оборудования, а также проведения экстракции.

Выяснено, что наиболее подходящим способом измельчения является вальцевание с последующей классификацией сырья по величине частиц. Оптимальными оказались такие технологические параметры измельченного растительного сырья: величина частиц от 0,1 мм до 1,0 мм, насыпная плотность около 0,5 г/мл определена также массоотдача целевых продуктов при использовании минимального количества экстрагента в соотношении сырье:экстрагент 1:5 [1, 3].

Тонко измельченное сырье позволяет механизировать процессы: загрузка в экстрактор, равномерность укладки слоя, взаимодействие с экстрагентом, регенерация остаточного экстрагента из истощенного растительного материала, механизация выгрузки с последующей переработкой шрота во вторичные хозяйственно ценные продукты.

В ходе отработки стадий подготовки растительного сырья были определены его технологические параметры, включая насыпную плотность, показатели массосодержания и массоотдачи, а также влияние этих параметров на процессы экстракции [6, 7].

Важными оказались закономерности, обнаруженные при изучении взаимодействия технологических параметров тонко измельченного растительного сырья и параметров слоя (высота, диаметр, равномерность и плотность укладки) [4, 5, 7].

Данные, приведенные в таблице, свидетельствуют о том, что в результате вальцевания значительно улучшены технологические свойства корней шлемника байкальского: увеличены показатели удельной поверхности материала и суммарной поверхности частиц, улучшена сыпучесть сырья, снижен показатель порозности. Такие улучшеные технологические свойства предполагают позитивное влияние на эффективность экстракционного процесса.

Технологические свойства корней шлемника байкальского, измельченных различными способами

Технологические показатели	Численные значения параметров для сырья	
	измельченного изрезыванием	измельченного вальцеванием
Средний диаметр частиц, мм	1,71	0,28
Удельная плотность, г/см ³	1,4699	1,4699
Объемная масса, г/см ³	1,0	1,0
Насыпная масса, г/см ³	0,2	0,4
Количество частиц в 100 г сырья	1504009,5	10499331,4
Суммарная поверхность частиц (100 г) , см ²	795,4	17996,1
Удельная поверхность материала, cm^2/Γ	7,954	179,961
Пористость	0,32	0,32
Порозность	0,8	0,6
Свободный объем слоя, см ³	0,86	0,73
Сыпучесть, г/с	0,23	1,11
Угол естественного откоса	50°	30°
Коэффициент поглощения, см ³ /г по 70% спирту	2,2	1,8

Примечание. В таблице приведены средние значения из шести определений.

Фильтрационную экстракцию можно рассматривать как одну из современных разновидностей перколяции, диаколяции или эваколяции [9].

В этом случае впервые удалось преодолеть ряд недостатков известных методических приемов экстракции [2, 3, 8].

В связи со специальной подготовкой растительного сырья вальцеванием с последующей классификацией по величине частиц стало анахронизмом понятие о коэффициенте диффузии через растительную оболочку как величине, определяющей скорость экстракции.

В силу вступило представление об экстракции как комплексном процессе, включающем смачивание растительного материала экстрагентом, растворение экстрактивных веществ и вытеснение концентрированных растворов непрерывным потоком экстрагента.

Преодоление гидравлического сопротивления достигается при вакуумировании приемника экстракта или наложения давления на слой жидкости над сырьем.

Кроме того, в этом случае исключается необходимость достижения равновесия концентраций во всей массе системы сырье — экстрагент как необходимое условие в существующих методах мацерации, перколяции.

При непрерывном потоке и вытеснении насыщенных растворов фронтального слоя в фильтрационной экстракции наблюдается сохранение максимальной разницы в концентрации веществ в сырье и экстрагенте как движущей силы процесса извлечения.

В связи с этим при фильтрационной экстракции стало возможным получать максимально концентрированные извлечения (до 20%) в первых сливах и достигать истощения сырья минимальным количеством

экстрагента (около 5 объемов на единицу массы сырья) [10].

Для нахождения оптимальной высоты слоя сырья в вакуум-фильтрационном экстракторе исследовалась закономерность прироста концентрации получаемого извлечения с увеличением высоты слоя сырья. Оптимальной для получения насыщенного извлечения (сухой остаток составлял 7,75%) оказалась высота слоя 15 см. Дальнейшее увеличение высоты было нерациональным, так как в этом случае извлечение на «выходе» из экстрактора получалось достаточно вязким из-за высокого содержания БАВ, возникало значитель-

ное гидростатическое сопротивление сырья, существенно увеличивалась продолжительность экстракции, а концентрация извлечения изменялась незначительно.

После нахождения оптимальной высоты слоя сырья в экстракторе изучалась динамика вакуум-фильтрационного экстрагирования корней шлемника байкальского в отношении флавоноидов. Для этого с одной загрузки сырья массой 100,0 г получали пять объемов извлечения (каждый по 100 мл), в которых определяли «сухой остаток» и концентрацию флавоноидов. Полученные результаты представлены на рис. 1, 2.

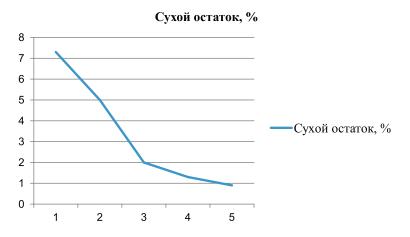


Рис. 1. Изменение показателя «сухого остатка» спиртового извлечения в процессе вакуум-фильтрационного экстрагирования корней шлемника байкальского по пяти поочередно получаемым сливам (1:1)



Рис. 2. Изменение концентрации БАВ в спиртовом извлечении в процессе вакуум-фильтрационного экстрагирования корней илемника байкальского по пяти поочередно получаемым сливам (1:1)

Таким образом, на модели такого перспективного сырьевого объекта, как шлемник байкальский, показано, что применение фильтрационной экстракции приводит к значительному сокращению длительности экстракционного процесса (в 5–10 раз); увеличению

эффективности извлечения БАВ (на 20–50%); получению более качественных извлечений за счет ускорения самого процесса. Очевидны также преимущества, заключающиеся в экономии производственных площадей и возможности механизации ряда трудоемких стадий.

Список литературы

- 1. Аммосов А.С., Попова Т.П., Попова Н.В., Литвиненко В.И. Вальцевание перспективный способ измельчения растительного лекарственного сырья // Актуальные вопросы фармац. науки и практ.: Тез. докл. науч.-практ. конф., посвящ. 25-летию фармац. фак-та Курского мед. ин-та. Курск, 1991. Часть 1. С. 170–171.
- 2. Георгиевский В.П., Литвиненко В.И., Губин Ю.И., Александров А.Н. Извлечения как лекарственные средства // Актуальные проблемы создания новых лекарственных препаратов природного происхождения: Материалы Третьего междунар. съезда. СПб., 1999. С. 113–115.
- 3. Литвиненко В.И., Попова Т.П., Аммосов А.С., Мишев В.М. Технологические процессы и их аппаратурное оформление в фитохимическом производстве // Научные достижения и проблемы производства лекарственных средств: тез. докл. науч.-практ. конф. Харьков, 1995. С. 17–18.
- 4. Литвиненко В.И., Попова Т.П., Аммосов А.С., Фурса Н.С., Талашова С.В. Вакуум-фильтрационная экстракция корневищ с корнями валерианы // Межвуз. сб. науч. тр. и материалов 51-й науч.-практ. конф. Пермского фарм. ин-та. Пермь, 1995. С. 98.
- 5. Литвиненко В.И., Талашова С.В., Попова Т.П., Фурса Н.С. Пути унификации производства галеновых препаратов валерианы // Современные аспекты изучения лекарственных растений: сб. науч. тр. НИИФ, 1995. Т. 34. С. 35–40.
- 6. Попова Т.П., Литвиненко В.И. Некоторые общие закономерности извлечения действующих веществ из лекарственного сырья. Сообщ. 1. // Фармаком. 1993. № 1. С. 13–15.
- 7. Попова Т.П., Литвиненко В.И. Некоторые общие закономерности извлечения действующих веществ из лекарственного сырья. Сообщ. 2. Технологические свойства лекарственного растительного сырья // Там же. № 2. С. 8–12.
- 8. Попова Т.П., Аммосов А.С., Литвиненко В.И., Мишев В.М. Фильтрационная экстракция и ее аппаратурное оформление // Там же. 1994. № 2–3. С. 43–49.
- 9. Пономарев В.Д. Экстрагирование лекарственного растительного сырья. М.: Медицина, 1976. 204 с.
- 10. Сандер Ю.К. Технология и оборудование галеновых производств. М.: Медгиз, 1956. 736 с.
- 11. Степанова Э.Ф., Андреева И.Н., Шевченко А.М. Основные направления и перспективы развития технологии корригированных препаратов в отечественном фармацевтическом производстве // Успехи современного естествознания. − 2004. № 1. С. 99–100.
- 12. Степанова Э.Ф., Сысуев Б.Б., Митрофанова И.Ю. Перспективы и проблемы создания на основе минерала бишофит эффективных лекарственных форм // Фундаментальные исследования. 2011. N 6. C. 218–221

References

1. Ammosov A.S., Popova T.P., Popova N.V., Litvinenko V.I. Val>cevanie perspektivnyj sposob izmel>chenija rastitel>nogo lekarstvennogo syr>ja // Aktual>nye voprosy farmac. nauki i prakt.: Tez. dokl. nauch.-prakt. konf., posvjashh. 25-let-

- iju farmac. fak-ta Kurskogo med. in-ta. Kursk, 1991. Chast> 1. pp. 170–171.
- 2. Georgievskij V.P., Litvinenko V.I., Gubin Ju.I., Aleksandrov A.N. Izvlechenija kak lekarstvennye sredstva // Aktual>nye problemy sozdanija novyh lekarstvennyh preparatov prirodnogo proishozhdenija: Materialy Tret>ego mezhdunar. sezda. SPB, 1999. pp. 113–115.
- 3. Litvinenko V.I., Popova T.P., Ammosov A.S., Mishev V.M. Tehnologicheskie processy i ih apparaturnoe oformlenie v fitohimicheskom proizvodstve // Nauchnye dostizhenija i problemy proizvodstva lekarstvennyh sredstv: Tez. dokl. nauch.prakt. konf. Harkov, 1995. pp. 17–18.
- 4. Litvinenko V.I., Popova T.P., Ammosov A.S., Fursa N.S., Talashova S.V. Vakuum-fil>tracionnaja jekstrakcija kornevishh s kornjami valeriany // Mezhvuz. sb. nauch. tr. i materialov 51-j nauch.-prakt. konf. Permskogo farm. in-ta. Perm>, 1995. pp. 98.
- 5. Litvinenko V.I., Talashova S.V., Popova T.P., Fursa N.S. Puti unifikacii proizvodstva galenovyh preparatov valeriany // Sovremennye aspekty izuchenija lekarstvennyh rastenij: Sb. nauch. tr. NIIF, 1995. T. 34. pp. 35–40.
- 6. Popova T.P., Litvinenko V.I. Nekotorye obshhie zakonomernosti izvlechenija dejstvujushhih veshhestv iz lekarstvennogo syrja. Soobshh. 1. // Farmakom. 1993. № 1. pp. 13–15.
- 7. Popova T.P., Litvinenko V.I. Nekotorye obshhie zakonomernosti izvlechenija dejstvujushhih veshhestv iz lekarstvennogo syroja. Soobshh. 2. Tehnologicheskie svojstva lekarstvennogo rastitelonogo syroja // Tam zhe. no. 2. pp. 8–12.
- 8. Popova T.P., Ammosov A.S., Litvinenko V.I., Mishev V.M. Fil>tracionnaja jekstrakcija i ee apparaturnoe oformlenie // Tam zhe. 1994. no. 2–3. pp. 43–49.
- 9. Ponomarev V.D. Jekstragirovanie lekarstvennogo rastitel>nogo syr>ja. M.: Medicina, 1976. 204 p.
- 10. Sander Ju.K. Tehnologija i oborudovanie galenovyh proizvodstv. M: Medgiz, 1956. 736 p.
- 11. Stepanova E.F., Andreeva I.N., Shevchenko A.M. Osnovnye napravlenija i perspektivy razvitija tehnologii korrigirovannyh preparatov v otechestvennom farmacevticheskom proizvodstve // Uspehi sovremennogo estestvoznanija. 2004. no. 1. pp. 99–100.
- 12. Stepanova E.F., Sysuev B.B., Mitrofanova I.Ju. Perspektivy i problemy sozdanija na osnove minerala bishofit jeffektivnyh lekarstvennyh form // Fundamental/nye issledovanija. 2011. no. 6. pp. 218–221.

Рецензенты:

Дроздова И.Л., д.фарм.н., декан фармацевтического и биотехнологического факультетов, профессор кафедры фармакогнозии и ботаники, ГБОУ ВПО «Курский государственный медицинский университет», г. Курск;

Сампиев А.М., д.фарм.н., профессор, зав. кафедрой фармации, ГБОУ ВПО «Кубанский государственный медицинский университет», г. Краснодар.

Работа поступила в редакцию 06.10.2014.