УДК 54.052

ХАРАКТЕРИСТИКИ НАНОПОРОШКОВ ДИОКСИДА КРЕМНИЯ, ПОЛУЧЕННЫХ КРИОХИМИЧЕСКОЙ ВАКУУМНОЙ СУБЛИМАЦИЕЙ ВОДНЫХ ЗОЛЕЙ

¹Потапов В.В., ¹Горев Д.С., ²Горева Т.С.

¹Научно-исследовательский геотехнологический центр ДВО РАН, Петропавловск-Камчатский, e-mail: vadim_p@mail.ru; ²Дальневосточный федеральный университет, филиал, Петропавловск-Камчатский

Выполнены эксперименты по получению нанопорошков кремнезема на основе гидротермальных растворов и водных силикатов натрия. Нанопорошки кремнезема получали криохимической вакуум-сублимационной сушкой концентрированных золей кремнезема. Золи кремнезема предварительно готовили мембранным концентрированием гидротермальных растворов и растворов на основе силиката натрия. Установлены технологические параметры вакуум-сублимационной сушки: временные зависимости давления и температуры в различных участках вакуумной камеры. Перед сублимацией в вакуумной камере золи кремнезема диспергировали и получали криогранулы в жидком азоте при температуре 77 К. Методом низкотемпературной адсорбции азота определены характеристики нанопорошков, полученных в различных технологических режимах: диаметры, площадь поверхности и объем пор. Выполнено сравнение характеристик нанопорошков в зависимости от технологического режима получения.

Ключевые слова: водный золь кремнезема, криохимическая вакуумная сублимация, порошок нанокремнезема, низкотемпературная адсорбция азота, площадь, объем и диаметр пор нанопорошка

CHARACTERISTICS OF NANOPOWDERS OF DIOXIDE OF THE SILICON, RECEIVED WITH CRYOCHEMICAL VACUUM SUBLIMATION WATER ZOL

¹Potapov V.V., ¹Gorev D.S., ²Goreva T.S.

¹Research Geotechnological Center, Far Eastern Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, e-mail: vadim_p@mail.ru; ²Far Eastern Federal University, Department, Petropavlovsk-Kamchatsky

Experiments on receiving nanopowders of silicon dioxide on the basis of hydrothermal solutions and water silicates of sodium are executed. Nanopowders of silicon dioxide received cryochemical vacuum and sublimation drying concentrated fill in silicon dioxide. Zoli of silicon dioxide previously trained membrane concoction of hydrothermal solutions and solutions on the basis of sodium silicate. Technological parameters of vacuum and sublimation drying are established: temporary dependences of pressure and temperature in various sites of the vacuum camera. Before sublimation in Zoli's vacuum camera of silicon dioxide dispersed and received cryogranules in liquid nitrogen at a temperature of 77 of K. Metodom of low-temperature adsorption of nitrogen characteristics of the nanopowders received in various technological modes are defined: diameters, surface area and volume of a time. Comparison of characteristics of nanopowders depending on a technological mode of receiving is executed.

Keywords: water silica sol, chryochemical vacuum sublimation, nanosilica powder, area, low-temperature adsorbtion of nitrogen, volume and diameter of nanopowder pores

Существует технологический подход к выделению полезных компонентов гидротермальных растворов на основе их баромембранного концентрирования и последующей криохимической вакуумной сублимацией [1-4]. Концентрированный водный золь кремнезема получен из жидкой фазы гидротермальных теплоносителей (сепаратов) скважин Мутновских геотермальных электрических станций (ГеоЭС). Отделение (сепарацию) жидкой фазы от паровой фазы двухфазного потока проводили в сепраторах ГеоЭС. Диапазон значений рН исходного сепарата 9,0-9,4, концентрации кремнезема Ct = 600 - 800 мг/кг, температура раствора 70°С.

Использованное оборудование

Установка для мембранного концентрирования гидротермального раствора включала патрон (патроны) с мембранными фильтрами, насос, расходомеры, манометры, запорную и регулирующую арматуру, емкости исходного раствора, концентрата и фильтрата.

Использованы ультрафильтрационные мембраны капиллярного типа. Исходная среда подается в длинные капиллярные трубки, стенки которых представляют собой мембранный слой. При движении внутри трубки часть среды фильтруется наружу в радиальном направлении и накапливается в корпусе фильтр-патрона в пространстве между трубками (фильтрат). Та часть среды, которая прошла по всей длине трубки, не фильтруясь через стенки мембраны (концентрат), поступает в коллектор концентрата и выводится из патрона в осевом направлении. Фильтрат выводится из корпуса фильтр патрона в боковом направлении.

Применяли мембраны, выполненные из полиэфирсульфона либо полиакрилони-

ТЕХНИЧЕСКИЕ НАУКИ

трила. Диаметры пор мембранного слоя распределены в диапазоне 20-100 нм. Двухстадийным мембранным концентрированием гидротермального сепарата получен золь MB с содержанием SiO, 40 г/дм³. Золь МВ кремнезема был использован для получения малоагрегированного нанодисперсного порошка УФ44. Криохимическая вакуумная сублимация, основанная на сочетании низко- и высокотемпературных воздействий на перерабатываемые материалы, предоставляет широкие возможности для получения нанодисперсных материалов, в том числе и из золей, суспензий. Технологическая схема криохимической вакуумной сублимации включает следующую последовательность основных технологических фаз производства:

1) диспергирование золя и криокристаллизация капель дисперсной среды в жидком азоте;

2) сублимационное удаление растворителя из криогранулята, полученного на предыдущей стадии;

3) утилизация (десублимация) растворителя.

Диспергирование растворов на отдельные капли применяют для создания развитых межфазных поверхностей, обеспечивающих высокую интенсивность тепло- и массообменных процессов, сопровождающих технологические фазы криокристаллизации и сублимации.

Главная цель процесса криокристаллизации заключается в сохранении высокой химической и гранулометрической однородности, присущих диспергируемой золи. Возможность сохранения высокой химической однородности определяется различными условиями, в том числе размером замораживаемых капель раствора, его температурой, физико-химической природой и температурой хладоагента. Гранулометрическая однородность продукта характеризуется размерами как самих криогранул, так и дисперсных кристаллитов, образованных на стадии старения исходного гидротермального раствора. Особенность криогранулирования состоит в том, что процесс кристаллизации водной золи проводят при температурах, значительно более низких, чем температура замерзания воды. Такое понижение температуры необходимо для увеличения скорости замораживания, что позволяет исключить агрегацию и зафиксировать равномерно распределенные наночастицы кремнезема, находящего в золи, в твердом состоянии. В дальнейшем при сублимационном удалении воды остается малоагрегированный порошок кремнезема с дисперсностью, соответствующей дисперсности кремнезема в водном золе. Стадию сублимации льда проводят при давлении более низком, чем давление, соответствующее тройной точке воды, для которой эти параметры составляют: давление (p = 610 Па) и температура (T = 0,0076 °C). Это позволяет свести к минимуму агломерацию сформировавшихся на стадии замораживания частиц кремнезема, благодаря исключению появления фрагментов капельной влаги.

Сублимационная сушка криогранул золя кремнезема проводилась на экспериментальной установке УВС-2Л. Установка сублимационная лабораторная является экспериментальным образцом и предназначена для исследования и выбора оптимальных режимов процесса сушки нанопорошков, изготовленных методом криогрануляции.

Технические характеристики установки УВС-2Л:

1. Производительность установки по испаренной влаге – 1,0 л/цикл сушки.

2. Остаточная влажность высушенного продукта – 0,3%.

3. Температура рабочих полок – –20... + 150°С.

4. Величина вакуума – 3·10⁻² мм рт. ст.

Физическая адсорбция газов мезопористыми твердыми телами

Изучение пористой структуры мезопористых твердых тел тесно связано с интерпретацией VI типа изотерм адсорбции. Действительно, этот тип изотерм характерен именно для адсорбции в мезопорах. В области низких давлений изотермы четвертого и второго типа идентичны друг другу. Однако, начиная с некоторой точки, изотерма четвертого типа отклоняется вверх, а затем при более высоких давлениях ее наклон уменьшается. При приближении к давлению насыщенных паров величина адсорбции может слегка изменяться или же заметно возрастать.

Характерный признак изотермы четвертого типа – наличие петли гистерезиса. Форма петли может быть различной для разных адсорбционных систем.

Интерпретируя изотермы четвертого типа, можно с приемлемой точностью оценить удельную поверхность и получить приблизительную характеристику распределения пор по размерам [1].

УФ-44 получен из концентрированного сепарата (35–40 г/дм³ – 2-я стадия) (М Гео-ЭС на «мелкой воде» (мелкие размеры частиц) ультрафильтрацией и последующей вакуумной сублимацией с использованием жидкого азота на укрупненной установке УВС-2Л в П-К.

№ п/п	Время	Темпе- ратура полки верх, °С	Темпера- тура лотка верх, °С	Темпера- тура мат. верх, °С	Темпе- ратура полки низ, °С	Темпе- ратура лотка низ, °С	Темпе- ратура мат. низ, °С	Темпе- ратура в сублима- торе, °С	Вакуум, мм рт. ст.
1	12:16	-22	-63	-85,5	-30,4	-49,4	-50,8	21,5	0,08
2	12:26	61	-34,4	-53,4	74	-38,6	-39,1	31	0,02
3	13:10	92,4	6,4	-40,5	93,3	5	-27,8	35	0,03
4	13:25	74,1	6,5	-39,2	77,9	9,9	-25,4	32,2	0,03
5	13:48	54,3	3,6	-38,8	60,5	10,7	-26,9	29,6	0,035
6	14:13	39,9	-0,6	-39,2	46,9	8,2	-26,7	27,8	0,03
7	14:23	35,9	-2,1	-39,7	43,1	6,8	-25,7	27,2	0,03
8	14:38	29,6	-3,6	-38,7	37,2	5,4	-24,9	16,4	0,05
9	14:48	25,5	-4,3	-37,8	33,3	4,7	-23,9	25,8	0,07
10	15:12	19,1	-6,8	-38,7	27,1	1,3	-25	24,7	0,045
11	15:20	41,7	-3,8	-38,2	26,4	2,9	-22,7	24,6	0,038
12	15:38	36,4	-0,6	-37,3	64,4	8,1	-20,3	30,8	0,037
13	16:03	40,9	1,8	-36,4	53,2	15,1	-16,3	29	0,036
14	16:28	60,9	11,9	-33,4	60	20,3	-9,1	30,5	0,044
15	16:41	59,8	13,2	-33,2	60,1	21,8	-8	30,5	0,043
16	16:58	59,9	14,9	-32,2	60	24,1	-3,8	30,5	0,039
17	17:12	83,7	19,3	-31,2	60,2	26,9	1,4	30,8	0,045
18	17:29	79,8	24,5	-29,2	59,9	30	5,3	30,9	0,046
19	18:02	86,9	31,3	-26,4	60	37,2	5,9	31,3	0,046
20	19:37	87,1	36,8	-19,6	60	54,8	6,1	31,5	0,05
21	19:54	87	38,5	-18	58,2	56,3	6,9	31,2	0,047
22	22:10	87,1	44,7	-0,9	45,6	48,5	7,5	29	0,045
23	22:35	87	46,2	2,8	36,8	45,6	7,9	28,9	0,051
24	22:54	86,9	48	7	28,7	35,7	8,4	28,7	0,07
25	23:06	86,6	49,4	9,4	25,5	28,9	9,8	28,7	0,05

Данные сублимационной сушки образца УФ-44

Таблица 1

Для сравнения был получен порошок Sialg-21. При этом в качестве исходной среды использовали силикат натрия. Водный раствор силиката натрия пропускали через слой ионообменной смолы (Н-катионит КУ-2) для удаления катионов Na⁺и получали золь кремнезема с содержанием SiO₂ 25-30 г/дм³. Содержание SiO₂ в золе повышали мембранным концентрированием до 125 г/дм³. Вакуум-сублимационной сушкой золя на укрупненной установке УВС-2Л с жидким азотом из концентрированного золя кремнезема получен порошок Sialg-21. Технологические характеристики вакуум-сублимационной сушки при получении порошка Sialg-21 приведены в табл. 5 и на рис. 3.

Кривые сорбции-десорбции азота для образца Sialg-21 и итоговые результаты определения характеристик пор методом низкотемпературной адсорбции азота приведены на рис. 5 и в табл. 6.

Температура материала низ

Температура материала верх

Рис. 2. Кривые сорбции-десорбции для порошка УФ-44.

Таблица 2

Данные низкотемпературной адсорбции азота для порошка УФ-44

Относительное давление (р/р0)	Давление, мм рт. ст.	Объем абсорбента, см ³ /г	Время
0,010233206	7,60211	23,1373	0:45
0,032579187	24,20262	29,2369	0:46
0,067594850	50,21527	34,0997	0:48
0,079965199	59,40503	35,3672	0:49
0,100118338	74,37651	37,3456	0:51
0,120222783	89,31182	39,1016	0:52
0,140271514	104,20574	40,5286	0:53
0,160222762	119,02724	42,1425	0:55
0,180299355	133,94186	43,5208	0:56
0,200348085	148,83578	44,8773	0:57
0,250184510	185,85857	47,1917	0:58
0,300403717	223,16576	49,8615	1:00
0,350219333	260,17303	52,8683	1:01
0,399986025	297,14401	56,7009	1:03
0,799366534	593,8382	137,3392	1:48
0,733157052	544,6521	130,0907	1:50
0,597967300	444,22153	86,1893	1:57
0,549376968	408,12445	73,4655	1:59
0,500027811	371,46365	64,7622	2:01
0,450595221	334,74088	59,0664	2:03
0,400960724	297,8681	54,6806	2:04
0,350567402	260,43161	50,6362	2:06
0,300508202	223,24333	47,0738	2:07
0,250616135	186,17921	44,3429	2:09
0,182868113	135,85016	41,6455	2:10
0,140814486	104,60911	39,2893	2:12

■ FUNDAMENTAL RESEARCH №11, 2013 ■

ТЕХНИЧЕСКИЕ НАУКИ

Таблица З

Данные низкотемпературной адсорбции по характеристикам пор образца УФ-44

Диапазон диа- метра поры, нм	Среднее число диаметра, нм	Объем поры, см ³ /г·нм	Совокупный объ- ем поры, см ³ /г	Возрастающая область поры, м ² /г	Совокуп- ная область поры, м ² /г
3670,6–1947,4	2320,70	4,4702e-02	0,012306	0,212	0,212
1947,4–1011,6	1205,50	4,7398e-02	0,025788	0,447	0,659
1011,6–785,8	869,80	5,4395e-02	0,031755	0,274	0,934
785,8–397,9	472,90	5,9808e-02	0,049432	1,495	2,429
397,9–273,2	311,80	7,2703e-02	0,061298	1,522	3,951
273,2–206,9	230,40	6,4642e-02	0,069108	1,356	5,307
206,9–167,2	182,50	8,5996e-02	0,0T7065	1,744	7,051
167,2–141,2	151,80	1,1511e-01	0,085527	2,230	9,282
141,2–117,9	127,20	1,8959e-01	0,100337	4,656	13,937
117,9–106,4	111,50	2,9593e-01	0,113565	4,746	18,683
106,4–85,0	93,10	3,5214e-01	0,147804	14,714	33,397
85,0–70,6	76,40	4,0034e-01	0,180041	16,889	50,286
70,6–60,1	64,40	3,7550e-01	0,206284	16,290	66,575
60,1–52,1	55,50	3,2065e-01	0,226231	14,382	80,958
52,1–45,7	48,40	2,5969e-01	0,241116	12,300	93,258
45,7–40,4	42,70	2,1370e-01	0,252437	10,609	103,867
40,4–36,0	37,90	1,5743e-01	0,260321	8,315	112,182
36,0–32,2	33,80	1,3бІОе-01	0,266989	7,880	120,062
32,2–28,9	30,3	1,2731e-01	0,273020	7,960	128,022
28,9–25,9	27,20	6,2892e-02	0,275995	4,380	132,401
25,9–23,1	24,30	3,2353e-02	0,2T7568	2,586	134,987
23,1–19,6	20,10	2,5674e-02	0,279415	3,682	138,669
19,6–18,6	19,10	8,0401e-02	0,281212	3,767	142,436
18,6–17,6	18,10	1,1881e-01	0,283992	6,142	148,578

Таблица 4

Характеристики порошка УФ-44, полученные методом низкотемпературной адсорбции азота

№ п/п	Характеристика	Единицы измерения	Показатель
1	ВЕТ площадь	M^2/Γ	165,3
2	ВЈН Площадь пор по кривой адсорбции	M^2/Γ	148,6
3	ВЈН Площадь пор по кривой десорбции	M^2/Γ	164,0
4	Объем пор, определенный по одной точке	см ³ /г	0,247
5	ВЈН Объем пор по кривой адсорбции	см ³ /г	0,284
6	ВЈН Объем пор по кривой десорбции	см ³ /г	0,292
7	Средний диаметр пор	HM	59,8
8	Средний диаметр пор по кривой адсорбции	HM	76,4
9	Средний диаметр пор по кривой десорбции	HM	71,2
10	Площадь микропор	M^2/Γ	6,54
11	Объем микропор	см ³ /г	0,0005

	, ,							
№ п/п	Время	Температура полки верх, °С	Температура лотка верх, °С	Вакуум, мм рт. ст.				
1	9:00	-10	-10	0,045				
2	9:40	10	10	0,043				
3	10:15	25	25	0,038				
4	10:50	35	35	0,039				
5	11:25	45	45	0,035				
6	11:40	50	50	0,031				
7	12:10	60	60	0,03				
8	12:50	65	65	0,035				
9	13:40	72	72	0,043				
10	14:30	80	80	0,025				
11	15:10	80	80	0,023				
12	16:00	80	80	0,02				
13	16:40	80	80	0,022				

Данные вакуумной сублимационной сушки образца Sialg 21

Таблица 5

Рис. 3. Вакуум образца Sialg 21

Рис. 4. График роста температуры: а – полки низ образца Sialg 21; б – полки верх образца Sialg 21

График изотерм Sialg21

Рис. 5. График изотерм Sialg 21

Таблица 6

Характеристики порошка Sialg 21, полученные методом низкотемпературной адсорбции азота

№ п/п	Характеристика	Единицы измерения	Показатель
1	ВЕТ площадь	M^2/Γ	278,5
2	ВЈН Площадь пор по кривой адсорбции	M^2/Γ	252,9
3	ВЈН Площадь пор по кривой десорбции	M^2/Γ	275,7
4	Объем пор, определенный по одной точке	см ³ /г	0,403
5	ВЈН Объем пор по кривой адсорбции	см ³ /г	0,515
6	ВЈН Объем пор по кривой десорбции	см ³ /г	0,525
7	Средний диаметр пор	НМ	57,8
8	Средний диаметр пор по кривой адсорбции	НМ	81,5
9	Средний диаметр пор по кривой десорбции	HM	76,2
10	Площадь микропор	M^2/Γ	6,54
11	Объем микропор	см ³ /г	0,0018

Выводы

Технологический режим, использованный нами, позволяет методом криохимической вакуумной сублимации получать на основе концентрированного водного золя кремнезема со средним диаметром частиц около 60 нм ультрадисперсные порошки, имеющие удельную поверхность до 165 м²/г, объем пор – до 0,25 см³/г, при среднем диаметре пор порошка 6 нм. Показана возможность использования в качестве исходной среды для получения нанопорошков кремнезема водных растворов силиката натрия. Удельная поверхность нанопорошков, полученных на основе силиката натрия, достигает 278,5 м²/г, объем пор – до 0,40 см³/г, средний диаметре пор – около 6 нм. Нанопорошк получил широкое применение как добавка к бетонам [6–10].

Список литературы

1. Потапов В.В. Коллоидный кремнезем в высокотемпературном гидротермальном растворе. – Владивосток: Дальнаука, 2003. – 216 с.

2. Потапов В.В., Сердан А.А., Горбач В.А., Литманович Е.А., Терпугов Г.В., Мынин В.Н. Извлечение коллоидного кремнезема из жидкой фазы гидротермального теплоносителя с применением мембранных фильтров // Химическая технология. – 2006. – № 5. – С. 2–8.

3. Потапов В.В., Аллахвердов Г.Р., Сердан А.А. (мл.), Мин Г.М., Кашутина И.А. Получение водных золей кремнезема мембранным концентрированием гидротермальных растворов // Химическая технология. – 2008. – № 6. – С. 14–22.

4. Потапов В.В., Трутнев Н.С., Горбач В.А., Генералов М.Б., Романова И.А.

Получение нанопорошков кремнезема из природных гидротермальных растворов // Химическая технология. – 2009. – № 12. – С. 712–719.

5. Потапов В.В., Горев Д.С., Туманов А.В., Кашутин А.Н., Горева Т.С. Получение комплексной добавки для повышения прочности бетона на основе нанодисперсного диоксида кремния гидротермальных растворов // Фундаментальные исследования. – 2012. – № 9 (часть 2). – С. 404–409.

6. Sanchez F., Sobolev K. Nanotechnology in concrete – A review. Construction and Building Materials 24 (2010) 2060–2071.

7. Yang T, Keller B, Magyari E. AFM investigation of cement paste in humid air at different relative humidities. J Phys D: Appl Phys 2002; 35: L25–8.

8. Beaudoin JJ, Raki L, Alizadeh R. A 29Si MAS NMR study of modified C-S-H nanostructures. Cem Concr Compos 2009; 31(8): 585–90.

9. Faucon P, Delaye JM, Virlet J, Jacquinot JF, Adenot F. Study of the structural properties of the C-S-H(I) by molecular dynamics simulation. Cem Concr Res 1997; 27(10): 1581–90.

10. Bjornstrom J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem Phys Lett 2004; 392(1–3): 242–8.

References

 Potapov V.V. Kolloidnyj kremnezem v vysokotemperaturnom gidrotermal'nom rastvore. Vladivostok: Dal'nauka, 2003, 216 p. 2. Potapov V.V., Serdan A.A., Gorbach V.A., Litmanovich E.A., Terpugov G.V., Mynin V.N. Iz-vlechenie kolloidnogo kremnezema iz zhidkoj fazy gidrotermal'nogo teplonositelya s prime-neniem membrannyx fil'trov // Ximicheskaya texnologiya. 2006. no. 5. pp. 2–8.

3. Potapov V.V., Allaxverdov G.R., Serdan A.A. (ml.), Min G.M., Kashutina I.A. Poluchenie vodnyx zolej kremnezema membrannym koncentrirovaniem gidrotermal'nyx rastvorov // Xi-micheskaya texnologiya. 2008.no. 6. pp. 14–22.

4. Potapov V.V., Trutnev N.S., Gorbach V.A., Generalov M.B., Romanova I.A. Poluchenie nanoporoshkov kremnezema iz prirodnyx gidrotermal'nyx rastvorov // Ximi-cheskaya texnologiya. 2009. no. 12. pp. 712–719.

5. Potapov V.V., Gorev D.S., Tumanov A.V., Kashutin A.N., Goreva T.S. Poluchenie kom-pleksnoj dobavki dlya povysheniya prochnosti betona na osnove nanodispersnogo dioksida kremniya gidrotermal'nyx rastvorov // Fundamental'nye issledovaniya. 2012. no. 9 (chast' 2). pp. 404–409.

6. Sanchez F., Sobolev K. Nanotechnology in concrete – A review. Construction and Building Materials 24 (2010) 2060–2071.

7. Yang T., Keller B., Magyari E. AFM investigation of cement paste in humid air at different relative humidities. J Phys D: Appl Phys 2002; 35: L25–8.

8. Beaudoin J.J., Raki L., Alizadeh R., A 29Si MAS NMR study of modified C-S-H nanostructures. Cem Concr Compos 2009; 31(8): 585–90.

9. Faucon P., Delaye J.M., Virlet J., Jacquinot J.F., Adenot F. Study of the structural properties of the C-S-H(I) by molecular dynamics simulation. Cem Concr Res 1997; 27(10): 1581–90.

10. Bjornstrom J., Martinelli A., Matic A., Borjesson L., Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem Phys Lett 2004; 392(1-3): 242–8.

Рецензенты:

Портнягин Н.Н., д.т.н., профессор кафедры теоретической электротехники и электрофикации нефтяной и газовой промышленности, РГУ нефти и газа имени И.М. Губкина, г. Москва;

Пюкке Г.А., д.т.н., профессор, ФГБОУ ВПО «Камчатский государственный технический университет», г. Петропавловск-Камчатский.

Работа поступила в редакцию 19.12.2013.