УДК 616.12-008.331.1:615.015

ВЛИЯНИЕ АМЛОДИПИНА НА РЕГУЛЯТОРНО-АДАПТИВНЫЙ СТАТУС У ПАЦИЕНТОВ С ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ I–II СТАДИИ

Самородская Н.А., Бочарникова М.И., Покровский В.М., Елисеева Л.Н.

ГБО УВПО «Кубанский государственный медицинский университет», Краснодар, email: docsam@mail.ru

Изучено изменение регуляторно-адаптивных возможностей организма у больных Γ Б под влиянием амлодипина, методом сердечно-дыхательного синхронизма. Обследовано 96 больных с Γ Б I—II стадии 1—2 степени, в возрасте 54,3 ± 6,4 года. Больных, после получения письменного информированного согласия рандомизировали в две группы. Первую группу составили 52 больных Γ Б I ст., вторую группу 44 больных Γ B I ст., назначена терапия амлодипином в индивидуально подобранных дозах (средняя доза 8,4 ± 0,8 мг/сут). По результатам сердечно-дыхательного синхронизма терапия амлодипином позволила оптимизировать регуляторно-адаптивный статус у пациентов с Γ Б II ст. и обратная ситуация сложилась у пациентов с Γ Б I ст.

Ключевые слова: артериальная гипертензия, амлодипин, сердечно-дыхательный синхронизм, регуляторноадаптивный статус

EFFECT OF AMLODIPINE ON REGULATORY-ADAPTIVE STATUS IN PATIENTS WITH STAGE I-II ESSENTIAL HYPERTENSION

Samorodskaya N.A., Bocharnikova M.I., Pokrovsky V.M., Eliseeva L.N.

HBO UVPO «Kuban State Medical University», Krasnodar, e-mail: docsam@mail.ru

The change of the regulatory – the adaptive capacity of the organism in patients with EH under the influence of amlodipine, a method of cardio-respiratory synchronism. We examined 96 patients with EH I-II stage of 1-2 degrees, at the age of $54,3\pm6,4$ years. Patients after obtaining written informed consent, were randomized into two groups. The first group consisted of 52 patients EH I st., a second group of 44 patients with EH II class., assigned to amlodipine therapy individually selected doses (mean dose $8,4\pm0,8$ mg/day). According to the results of cardio-respiratory synchronism amlodipine streamlined regulatory and adaptive status in patients with EH II class. The reverse situation has developed in patients with EH I st.

Keywords: hypertension, amlodipine, cardio-respiratory synchronism, regulatory and adaptive status

В настоящее время применение антагонистов кальция (АК) в лечении гипертонической болезни (ГБ) является стандартом, и данная группа входит в число препаратов первой линии терапии [2, 10]. Среди АК особое место занимает амлодипин – препарат дигидропиридинового ряда III поколения, он блокирует медленные кальциевые каналы (каналы L-типа) и препятствует внутриклеточной гиперкальциемии и сокращению гладкомышечной клетки, оказывая сосудорасширяющее действие. Традиционно, эффективность антигипертензивной терапии оценивается по динамике артериального давления (АД), некоторых морфометрических и метаболических параметров, а также клинической переносимости и частоте побочных и нежелательных явлений. Однако воздействие различных фармакологических антигипертензивных препаратов (АГП) на функциональное состояние организма может существенно отличаться у каждого конкретного больного. По данным литературы, в настоящее время недостаточно сведений об изменении регуляторно-адаптивных возможностей организма у больных ГБ под влиянием медикаментозной терапии и в частности АК, что, несомненно, представляет научный и практический интерес. Указанные факты обосновывают

необходимость поиска объективных методов контроля за регуляторно-адаптивными изменениями в организме на фоне антигипертензивной терапии. Одним из наиболее адекватных и объективных количественных методов, позволяющих исследовать и оценить комплексное взаимодействие вегетативных составляющих нейро-гуморальной регуляции организма в целом, может стать проба сердечно-дыхательного синхронизма (СДС), принципиальным отличием которой является новый методологический подход к оценке уровня адаптации - использование комплексной реакции двух важнейших вегетативных функций - дыхания и сердечной [3].

Целью настоящего исследования явилась оценка влияния гипотензивной терапии амлодипином на регуляторно-адаптивные возможности организма при помощи пробы сердечно-дыхательного синхронизма.

Материалы и методы исследования

Обследовано 96 больных с Γ Б I–II стадии 1–2 степени, из них 50 женщин и 46 мужчин в возрасте 54,3 ± 6,4 года, при этом давность Γ Б колебалась от 3 до 14 лет (7,2 ± 1,4). Пациенты включались в исследование после подтверждения диагноза Γ Б и степени повышения АД по результатам офисного измерения АД при трехкратном посещении врача с последующим проведением суточного мониторирования

АД (СМАД). Больных после получения письменного информированного согласия, рандомизировали в две группы. Первую группу составили 52 больных ГБ I ст., вторую группу 44 больных ГБ II ст., больным назначена терапия АК амлодипином (Нормодипин GEDEON RICHTER Ltd. Венгрия) в индивидуально подобранных дозах (средняя доза $8,4\pm0,8\,$ мг/сут). Пациенты до включения в исследование не принимали антигипертензивную терапию вообще или лечились нерегулярно, с последним приемом препаратов более $7-10\,$ дней.

В исследование не включали больных, не достигших целевого уровня АД к 8 недели, с симптоматическими АГ, острыми формами ИБС, диагностированными нарушениями ритма и проводимости, перенесенными или имеющимися нарушениями мозгового кровообращения (геморрагический или ишемический инсульт, транзиторные ишемические атаки), наличием сахарного диабета 1 и 2 типов, ХСН выше I стадии II функционального класса по NYHA, состояний эмоциональных и физических перегрузок, гематологических, онкологических заболеваний, принимающих психотропные или вегетокоррегирующие препараты. Исходно и через 1, 3, 6 месяцев наблюдения выполнялись следующие обследования: суточное мониторирование АД (СМАД) на аппарате «МН СДП 2» (Россия), анализировались стандартные показатели [6]; эхокардиографическое (ЭХОКГ) на аппарате «ALOKA SSD 5500» (Япония) датчиком 3,25 мГц по стандартной методике [9] для определения структурного и функционального состояния миокарда; проба СДС для оценки состояния регуляторно-адаптивного статуса (РАС) [4], на аппарате РНС МИКРО (Россия), заключающаяся в установлении синхронизации между заданным ритмом дыхания и сердцебиением при высокочастотном дыхании в такт вспышкам фотостимулятора, где анализировались исходная ЧСС, минимальная и максимальная границы диапазона синхронизации, диапазон синхронизации (ДС), длительность развития СДС на минимальной и максимальной его границах, индекс РАС [5]. Статистическая обработка полученных данных проводилась на персональном компьютере с использованием пакета программы Excel 2007 и пакета прикладных программ STATISTICA, версии 6,0 по общепринятым рекомендациям. Различия считали достоверными при $p \le 0,05$.

Результаты исследования и их обсуждение

Анализ основных показателей СДС позволил выявить, что на фоне монотерапии амлодипином (табл. 1) у пациентов с ГБ Іст. в первые месяцы наблюдения отмечались уменьшение: ЧСС (на 12,6%), длительность развития СДС на минимальной границе (на 7,2%), длительность развития СДС на максимальной границе (на 9,1%) и увеличилась: минимальная граница диапазона (на 3,6%), максимальная граница диапазона (на 4,8%), ДС (на 5,2%), ИРАС (на 6,1%). К 6 месяцу уменьшились: исходная ЧСС (на 7,7%), минимальная граница диапазона (на 4,0%), максимальная граница диапазона (на 2,6%), ДС (на 8,9%), ИРАС (на 13,5%) и увеличились: длительность развития СДС на минимальной границе (на 5,1%), длительность развития СДС на максимальной границе (на 6,7%).

К 6 месяцу терапии (см. табл. 1) у пациентов с ГБ II ст. уменьшались: ЧСС (на 15,8%), длительность развития СДС на минимальной границе (на 8,7%), длительность развития СДС на максимальной границе (на 11,9%) и увеличилась: минимальная граница диапазона (на 4,2%), максимальная граница диапазона (на 5,7%), ДС (на 6,4%), ИРАС (на 7,5%).

Таблица 1 Основные параметры СДС у больных с ГБ I-II ст. на фоне монотерапии амлодипином исходно и через 6 месяцев $(M\pm m)$

Параметры	ГБ I ст. $(n = 52)$		ГБ II ст. (<i>n</i> = 44)	
Длительность наблюдения	До начало	Через 6 мес.	До начало	Через 6 мес.
	терапии	терапии	терапии	терапии
Исходная ЧСС	$75,3 \pm 0,5$	$69,5 \pm 1,5*$	$78,1 \pm 0,3$	$66,2 \pm 2,0*$
Мин граница диапазона (кардиоциклы)	$72,0 \pm 0,7$	$69,1 \pm 1,2*$	$68,1 \pm 0,4$	$71,1 \pm 1,5*$
Макс. граница диапазона (кардиоциклы)	$80,3 \pm 0,9$	$78,2 \pm 1,3*$	$74,1 \pm 0,8$	$78,6 \pm 2,0*$
Длительность развития СДС на мин. границе	$15,3 \pm 0,1$	$16,4 \pm 0,5*$	21.8 ± 0.6	$19,2 \pm 0,6*$
(кардиоциклы)				
Длительность развития СДС на макс. границе	$22,4 \pm 0,2$	$23,6 \pm 0,4*$	$30,9 \pm 0,4$	$28,2 \pm 0,3*$
(кардиоциклы)				
Диапазон синхронизации (кардиоциклы)	$10,1 \pm 0,02$	9,2 ± 1,6*	$8,7 \pm 0,01$	9,3 ± 1,1*
ИРАС%	$50,1 \pm 0,6$	$43,4 \pm 0,4*$	$45,5 \pm 0,3$	49,2 ± 0,4*

 Π р и м е ч а н и е : ЧСС — частота сердечных сокращений, СДС — сердечно-дыхательный синхронизм, ИРАС — индекс регуляторно-адаптивного статуса. Данные представлены в виде M±SD; * -p < 0.05 статистически значимые различия в сравнении с контрольной группой (критерии Стьюдента с поправкой Бонферонни).

На фоне терапии по результатам СМАД (табл. 2) отмечалось достоверное снижение как САД у больных с ГБ Іст. на 12,7% и с ГБ ІІ ст. на 16,1%, так и ДАД (на 13,9 и на 13,6% соответственно). По данным ЭХОКГ, на фоне терапии амлодипином через 6 месяцев (см. табл. 2) у пациентов с ГБ ІІ стадии отмечалось достоверное

увеличение: ФВ (2,5%) соотношения пикового кровотока в период раннего наполнения левого желудочка и систолы левого предсердия (Е/А) (на 12,7%); достоверное уменьшение: времени изоволюметрического расслабления (IVRT) (на 11,4%) толщины ЗСЛЖ (на 12,1%) и МЖП (на 8,9%).

Таблица 2 Основные параметры артериального давления и центральной гемодинамики у больных с Γ Б I–II ст. на фоне монотерапии амлодипином исходно и через 6 месяцев ($M\pm m$)

Показатели	ГБ I ст. (<i>n</i> = 52)		ГБ II ст. (<i>n</i> = 44)	
Длительность наблюдения	Исходно	Через 6 мес. терапии	Исходно	Через 6 мес. терапии
срСАД мм рт. ст.	$146,1 \pm 2,4$	$127,4 \pm 1,5*$	$154,7 \pm 1,5$	$129.8 \pm 1.4*$
срДАД мм рт. ст.	$87,6 \pm 1,8$	$75,4 \pm 1,1*$	90.9 ± 1.3	$78,5 \pm 1,1*$
ФВ%	$63,2 \pm 2,1$	$63,4 \pm 2,1$	$62,0 \pm 2,0$	$63.8 \pm 1.6*$
E/A	$0,92 \pm 0,003$	0.93 ± 0.004	0.78 ± 0.004	$0.93 \pm 0.002*$
IVRT(MC)	$89,5 \pm 2,4$	$89,1 \pm 2,2$	$101,6 \pm 2,6$	$90.0 \pm 2.2*$
ЗСЛЖ -	$9,1 \pm 0,7$	$9,0 \pm 0,3$	11.8 ± 0.5	$10.5 \pm 0.2*$
МЖП (мм) -	$10,0 \pm 0,3$	$9,9 \pm 0,5$	$11,2 \pm 0,5$	$10,2 \pm 0,4*$

 Π р и м е ч а н и е : срСАД, срДАД — средние систолическое и диастолическое АД, 3СЛЖ — задняя стенка ЛЖ, МЖП — межжелудочковая перегородка ФВ — фракция выброса; E/A — отношение пика E к пику A, IVRT —время изоволюмического расслабления. Данные представлены в виде $M \pm SD$; * -p < 0.05 статистически значимые различия в сравнении с контрольной группой (критерии Стьюдента с поправкой Бонферонни).

Нежелательных побочных явлений, потребовавших отмены препарата, в нашем наблюдении не выявлено.

Полученные данные в результате длительной терапии амлодипином (6 месяцев) продемонстрировали у пациентов с ГБ І-ІІ стадии: безопасность и эффективность в качестве монотерапии. По данным ЭХОКГ: у пациентов с ГБ II ст. достоверно улучшалась диастолическая функция сердца, увеличивалась ФВЛЖ, уменьшались признаки гипертрофии миокарда, что сопоставимо с литературными данными [1], а у пациентов с ГБ I ст. существенной динамики по ЭХОКГ не отмечалось. По данным СМАД, исходный нормальный двухфазный суточный ритм АД не был изменен приемом амлодипина, что свидетельствует в пользу физиологического действия препарата. Изменения уровня АД под влиянием антигипертензивной терапии в целом по группам у обследованных пациентов были сопоставимы с известными литературными данными [1].

Из раннее проведенных исследований по АК дигидропиридинового ряда и их влиянию на СДС получены результаты по ретардной форме нифедипина (коринфар-ретар), которые показали, что наиболее существенное влияние препарат оказал на СДС при первом приеме, а в дальнейшем отмечалось постепенное ухудшение показателей.

Анализ основных показателей СДС на фоне длительной терапии амлодипином позволил выявить индивидуальную неоднородность и разнонаправленность, как исходного состояния пациентов, так и реакцию регуляторно-адаптивных систем на фоне лечения. Терапия АК – амлодипином, не обладающим хронотропным эффектом, позволила оптимизировать регуляторноадаптивный статус у пациентов с ГБ ІІ ст. что выражалось в расширении ДС, укорочении времени его развития на минимальной и максимальной границах, а также в увеличении интегрированного показателя ИРАС. Неоднозначные данные установлены у пациентов с ГБ І ст., так в первые месяцы на фоне монотерапии отмечалось улучшение показателей регуляторно-адаптивного статуса в виде расширения ДС, укорочения времени его развития на минимальной и максимальной границах, а также в увеличении интегрированного показателя ИРАС. К 6 месяцу наблюдения отмечалось ухудшение показателей регуляторно-адаптивного статуса, что выражалось в виде увеличения длительности развития СДС на максимальной и минимальной границах, уменьшения минимальной и максимальной границ диапазона, ДС и интегрированного показателя ИРАС. Несмотря на снижение ИРАС у пациентов с ГБ I ст., его уровень по предложенной шкале оценки РАС [5] оставался удовлетворительным.

Проанализировав фармакодинамический эффект изучаемого АГП, который мог бы повлиять на описанные процессы, можно предположить, что улучшение параметров СДС у пациентов с ГБ II ст. связано с рефлекторной активацией симпатической нервной системы, которая играет ведущую адаптационно-трофическую роль в изменяющихся условиях внутренней и внешней среды. У пациентов с ГБ І ст., при которой преобладает гиперсимпатикотония, ухудшение параметров СДС на фоне длительного применения амлодипина вероятно происходит за счет угасания рефлекторной симпатической активности, связанной с перенастройкой механизмов барорефлекторного контроля на более низкий уровень.

Одновременно следует обратить внимание на тот факт, что у больных ГБ II ст. амлодипин, в разной степени, приводит к доказанному изменению морфометрических показателей сердечной деятельности. В то же время у больных ГБ I ст. этого эффекта не наблюдается в связи с отсутствием признаков ремоделирования по классификационным критериям.

Учитывая неоднородный характер влияния амлодипина на СДС, мы предполагаем, что требуется дополнительный анализ особенностей индивидуальной реакции организма в ответ на АГТ.

Заключение

Новые факты, полученные в исследовании, позволяют расширить представления об информативности и значимости пробы СДС, которая, наряду с традиционными методами обследования при ГБ, открывает новые перспективы использования ее в качестве метода оценки эффективности и безопасности медикаментозной терапии, так как учитывает не только динамику сердечно-сосудистого ремоделирования, но и способность орга-

низма к регуляции и адаптации у каждого пациента.

Список литературы

- 1. Галявич А.С. Антагонисты кальция при лечении артериальной гипертонии // Руководство по артериальной гипертонии; под ред. Е.И. Чазова. М.: Медиа Медика, 2005 С. 634–643
- 2. Диагностика и лечение артериальной гипертензии. Национальные клинические рекомендации: сборник; под. ред. Р.Г. Оганова. 3-е изд. М.: Изд-во «Силицея-Полиграф», 2010. С. 478—484.
- 3. Сердечно-дыхательный синхронизм у человека / В.М. Покровский, В.Г Абушкевич и др. // Физиология человека. -2002. -T.28, №6. -C. 101–103.
- 4. Система для определения сердечно-дыхательного синхронизма у человека: патент №86860, Россия / В.М. Покровский, В.В. Пономарев, В.В. Артюшков, и др. 2009.
- 5. Покровский В.М. Сердечно-дыхательный синхронизм метод количественной интегративной оценки регуляторно-адаптивного статуса (состояния). Сердечно-дыхательный синхронизм в оценке регуляторно-адаптивных возможностей организма. Краснодар: «Кубань-Книга», 2010. С. 183–185.
- 6. Рогоза А.Н. Суточное мониторирование артериального давления (по материалам методических рекомендаций ESH 2003) // Функциональная диагностика. 2004. №4 С. 29–44
- 7. Фельдшерова Н.А., Семернин Е.Н. Амлодипин: обзор клинических исследований // Качественная клиническая практика. – 2002. – №2. – С. 27–33.
- 8. Смертность от основных болезней системы кровообращения в России / В.И. Харченко, Е.П. Какорина, М.В. Корякин и др. // Рос. кард. журн. 2005. №1. С. 5–7.
- 9. Шиллер Н.Б., Осипов М.А. Клиническая эхокардиография. М.: Практика, 2005. С. 344–345.
- 10. Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension ESH / G. Mancia, G. De Backer, A. Dominiczak et. al. // J. Hypertens. 2007. Vol. 25. P. 1105–1187.

Рецензенты:

Евсевьева М.Е., д.м.н., профессор, зав. кафедрой факультетской терапии ГБОУ ВПО «Ставропольский государственный медицинский университет», г. Ставрополь;

Канорский С.Г., д.м.н., профессор кафедры госпитальной терапии ГБОУ ВПО Куб-ГМУ Минздравсоцразвития РФ, г. Краснодар.

Работа поступила в редакцию 23.11.2011.