УДК 574.833 + 541.634

СИНТЕЗ И СТЕРЕОИЗОМЕРИЯ 1-МЕТИЛ-2-ФЕНИЛДЕКАГИДРОХИНОЛИН-4-ОНА

Жилкибаев О.Т., Шоинбекова С.А.

Казахский национальный университет им. аль-Фараби, Алматы, e-mail: zhilkibaevoral@mail.ru

Синезирована и изучена стереоизомерия 1-метил-2-фенилдекагидрохинолин-4-оновых аналогов природных алкалоидов. Выделены индивидуальные стереоизомеры и установлены их пространственные структуры. Устойчивые стереоизомеры (α и γ) имеют термодинамически более выгодные конформации с транссочленением циклов, отличаясь лишь различной ориентацией (e,a) фенильной группы при СЗ. Третий изомер (β) имеет конформацию с цис-сочленением колец с экваториальным фенильным радикалом. Структура этих стереоизомеров подтверждена также встречным синтезом – путем N-метилирования соответствующих индивидуальных стереоизомеров 2-фенилдекагидрохинолин-4-оновых формалином в муравьиной кислоте.

Ключевые слова: декагидрохинолины, синтез, стереоизомерия

SYNTHESIS AND STEREOISOMERY OF 1-METHYL-2-PHENYLDECAHYDROQUINOLINE-4-ONES

Zhilkibayev O.T., Shoinbekova S.A.

al-Farabi Kazakh National university, Almaty, e-mail: zhilkibaevoral@mail.ru

Stereoisomery of 1-methyl-2-phenyldecahydroquinolne-4-one analogs of natural alkaloids has been synthesized and studied. Individual isomers have been isolated and their spatial structures have been established: stable stereoisomers 3α and 3γ possess thermodinamically more profitable conformations of two chairs with equatorial-equatorial transcoupling of piperidine and cyclohexane rings, differening from each other only by different spatial orientation (e,a) of a phenyl radical at C_2 . Isomer 3β possesses a conformation with cis-coupling of the cycles with equatorial orientation of a phenyl group. Structure of these stereoisomers also proved or confirmed as N-methylation, the relevant individual stereoisomers 2-phenyldecahydroquinolne-4-one with formalin in formic acid.

Keywords: decahydroquinolines, synthesis, stereoisomers

Изыскание лекарственных средств, близких по структуре к природным, является одним из наиболее перспективных путей поиска новых препаратов. Декагидрохинолиновый каркас составляет основу многих природных алкалоидов (лобиналин, пумилиотоксин С, лепадины) [1, 2]. Среди производных декагидрохинолина известны соединения, обладающие выраженной обезболивающей, психостимулирующей и другой фармакологической активностью [3–10]. В связи с этим нами синтезирован и изучен стереоизомерный состав N-метильного производного 2-фенилдекагидрохинолин-4-она [11, 12].

Реакция β -стирил- Δ '-циклогексенилкетона (1) с водным раствором метиламина приводит к образованию смеси трех стереоизомеров аминокетона 2 с общим выходом 74%. Разделение смеси на индивидуальные формы (2 α , β , γ) осуществляют колоночной хроматографией на окиси алюминия. При этом виде выделено 63,9% индивидуального 2 γ , 6,3% стереоизомера 2 α и в незначительном количестве 1,2% цис-изомера 2 β .

Пространственное строение индивидуальных изомеров 2 α, β, γ доказано с помо-

щью данных ИК-, ЯМР ¹Н и ¹³С спектроскопии и масс-спектрометрии.

В ИК-спектрах изомеров 2 α , β , γ наблюдается интенсивная полоса поглощения в области 1695-1700 см-1, принадлежащая валентному колебанию карбонильной группы, а также имеются все характеристичные полосы поглощения исходного декагидрохинолина (3 α , β , γ), за исключением полосы при 3320 см⁻¹, соответствующей валентным колебаниям N-H группы. Больмановская полоса в спектре 2 у более интенсивна, чем у у-изомера 2-фенилдекагидро-хинолин-4она. Такое усиление интенсивности больмановской полосы связано с наличием дополнительного транс-фрагмента, включающего связь H-C-N-метильной группы и неподеленной пары азота. Известно, что интенсивность полос в больмановской области поглощения для третичных аминов, так же, как и для вторичных аминов, зависит от числа транс-фрагментов и, следовательно, отражает ориентацию заместителя при $C_2[13, 14]$.

В ПМР спектре изомера 2 α сигнал протона H^2 расположен при δ 3,99 м.д. в виде триплета с расщеплением 4,8 Γ ц. Химические сдвиги протонов при C^3 совпадают, т.к. проявляется случайная магнитная эквивалентность H^3 , H^3 . Сигналы этих протонов представлены дублетом с таким же расщеплением и составляют 9,2 Γ ц, что соответствует экваториальному расположению

протона при C_2 и аксиальному — фенильной группы. Сигнал протона 2H в спектре 2 α представлен дублетом (6,6 Γ ц) дублетов (2,6 Γ ц). Сигналы обоих ангулярных прото-

нов α -изомера отчетливо наблюдаются при δ 2,10 м.д. и δ 2,27 м.д. в виде триплетов (9,8 Γ ц) дублетов (2,8 Γ ц) и свидетельствуют о транс-сочленении колец.

Таблица 1 Некоторые физико-химические характеристики стереоизомеров (2 α , β , γ)

		1 .	l.		1	1	1 1	. () [)	17
	Номер со-	Вы-	Соотн.	Темп. пл.,	$R_{\rm f}$	Найден	Брутто-		
ĺ	единения	ход, %	изом.,%	°C		С	Н	N	формула
	2 α		63,6	86–87	0,38	78,89/78,97	8,78/8,70	5,63/5,76	$C_{16}H_{21}ON$
	2 β	2 β 73,8	6,3	111–112	0,59	78,91/78,97	8,61/8,70	5,82/5,76	$C_{16}H_{21}ON$
	2 γ		1,2	50-51	0,78	79,07/78,97	8,63/8,70	5,69/ 5,76	C ₁₆ H ₂₁ ON

В ПМР спектре соединения 2γ хорошо видны сигналы протонов H^2 , H^3_{a} , H^3_{e} (табл. 2). Значения вицинальных констант $^2J_{H\ H\ a}^{2\ 3}=11,2\ \Gamma$ ц и $^2J_{H\ H\ e}^{2\ 3}=4,0\ \Gamma$ ц подтверждают экваториальное расположение заместителя при C_2 . Сигналы ангулярных протонов (H^9 , H^{10}), по форме которых определяются способы сочленения, пере-

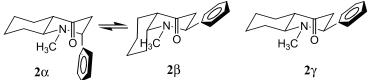
крыты другими. В спектре гидрохлорида — 2γ ·HCl в D_2 О сигналы протонов H^2 и H^9 приблизительно на δ 1,4 м.д. сдвинуты в слабые поля и наблюдаются отдельно. Сигнал протона H^9 представляет собой триплет ($10~\Gamma$ ц) дублетов ($3,5~\Gamma$ ц), что однозначно указывает на транс-сочленение циклов.

Таблица 2 Спектры ЯМР 1 Н стереоизомеров азабициклодекана (2 α , β , γ)

Индекс	Химические сдвиги, δ от ТМС, м.д.							КССВ, Ј, Гц			
соединения	H^2	H ³ _a	H^3_{e}	H ⁹	H ¹⁰	Ph	$H^2H^3_a$	H ² H ³ _e	$H_a^3 H_e^3$		
2 α	3,99	3,05	2,81	2,27	2,10	7,21	6,2	2,8	_		
2 β	3,67	2,60	2,45	3,23	2,90	7,29	8,2	6,3	_		
2 γ	3,32	2,72	2,42	2,40	2,12	7,26	12,2	3,0	13,6		

Изомерный ему аминокетон 3 в отличается только способом сочленения циклов. Этот вывод следует из данных ПМРспектра, в слабых полях отдельно от других сигналов наблюдаются сигналы, соответствующие протонам при C_9 , C_2 и C_6 . Химические сдвиги протонов при C_3 совпадают, их суммарное расщепление 14,6 Γ ц указывает на аксиальную ориентацию протона Н² и экваториальную – фенила. Сигнал протона H^9 представляет собой дублет (9,5 Γ ц) триплетов (5,0 Γ ц), сигнал протона \dot{H}^{10} обнаруживается в виде размытого триплета с константой в 5,0 Гц. Оба сигнала значительно смещены в слабые поля по сравнению с их расположением в спектрах изомеров 2 у и 2 α. Отличие по форме сигналов ангулярных протонов в изомере 2 В и величины их химических сдвигов свидетельствует о циссочленении циклов. Из величины расщеплений следует, что протон H⁹ испытывает одно диаксиальное и два аксиально-экваториальных взаимодействия, в то время как протон Н10 испытывает три аксиально-экваториальных взаимодействия, приблизительно равных по величине, и не имеет ни одного диаксиального. Такие виды взаимодействий ангулярных протонов с соседними возможны лишь при экваториальном расположении протона при С, аксиальном – протона при C_{10} относительно пиперидинового цикла. В спектре гидрохлорида аминокетона 2 β дублет триплетов испытывает сдвиг в слабые поля на 8 0,55 м.д., тогда как триплет смещен на δ 0,3 м.д. Эти данные подтверждают правильность отнесения сигналов при б 3,23 и б 2,90 м.д. протоном H_0 и H_{10} соответственно (см. табл. 2).

Таблица 3 Химические сдвиги атомов углерода стереоизомеров (2 α , β , γ)


Изомер	C,	C ₃	C_{4}	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C_{i}
2 α	56,9	44,5	210,1	23,9	25,6	25,2	33,0	57,5	56,7	140,2
2 β	57,4	49,6	209,7	21,3	25,7	25,2	29,1	53,2	49,7	143,7
2 γ	62,5	49,8	209,8	24,0	25,5	25,1	32,8	63,7	55,2	142,4

Спектры ЯМР 13 С изомеров 2 α и 2 γ практически совпадают за исключением сигналов от C_9 , C_2 , C_3 и C_1 что вызвано

различной ориентацией фенила в пространстве. В спектре α-изомера эти сигналы испытывают сильнопольный сдвиг, что

соответствует аксиальному положению фенила при C_2 . Кроме того, существенное смещение в сильное поле ($\Delta \delta = 2,2$ м.д.) претерпевает химический сдвиг C_i (ipsaуглеродный атом в фенильном радикале), что связано с аксиальной ориентацией фенильной группы в последнем. Спектр ЯМР

¹³С изомера 2 β отличается от двух предыдущих большим сдвигом в сильные поля сигнала С⁹ и появлением сильнопольного сдвига C¹⁰. Это является дополнительным подтверждением о транс-сочленении циклов в изомерах 2 а и 2 у и цис-сочленении – в изомере 2 β .

Установлено, что устойчивые стереоизомеры 1-метил-2-фенилдекагидрохинолин-4она (2γ, α) имеют термодинамический более выгодные конформации двух кресел с экваториально-экваториальным транс-сочленением пиперидинового и циклогексанового колец, отличаясь лишь различной пространственной ориентацией фенильного радикала при С₂. Изомер 2 β имеет цис-сочленение колец с экваториальным фенилом.

Правильность установленных структур стереоизомеров (2α , γ , β) подтверждается и встречным синтезом - путем N-метилирования соответствующих индивидуальных изомеров 2-фенилдекагидрохинолин-4-она. Полученные образцы N-метильных декагидрохинолинов (2α , β , γ) не показывали депрессию температуры плавления в пробе смешения с вышеописанными образцами, выделенными из смеси изомеров.

Экспериментальная часть

стереоизомерных 1-метил-2-фенилдекагидрохинолин-4-онов $(2\alpha,$ β , γ). К 60,5 г (0,248 моля) β -стирил- Δ 'циклогексенилкетона (1) прибавляли 235 мл водного раствора метиламина в 120 мл этилового спирта. Смесь нагревали при 75-80°C в течение 5 ч, после охлаждения подкисляли соляной кислотой (1:1) и нейтральные продукты многократно экстрагировали эфиром. Водно-кислый раствор при охлаждении насыщали поташом, смесь изомеров в основании экстрагировали эфиром и сушили над MgSO₄. Отгонкой эфира получали 64,53 г (73,8% от теоретического) смеси изомеров 2 а, 3 у с температурой кипения $^{139-140}\,^{\circ}$ С при 1,5 мм рт. ст., 20 1,5350 . 20

 β , γ) на индивидуальные формы. В стеклянную хроматографическую колонку с внутренним диаметром 4 см, высотой 120 см загружали 500 г оксида алюминия III степени активности. Затем в хроматографическую колонку засыпали хорошо растертый с адсорбентом 12 г смеси изомеров (2 а, β, γ) и элюировали смесью эфир – гексан
 (2:1). Отбор фракции элюата производили по 10-15 мл. В результате разделения в индивидуальном виде получали 7,66 г (63,9% от общего количества смеси) изомера – 2 γ, $0.76 \Gamma (6.3\%) - 2 \alpha и 0.14 \Gamma (1.2\%) - 2 \beta$.

Встречный синтез стереоизомеров $2 \alpha, \beta, \gamma$ осуществляли путем N-метилирования соответствующих изомеров 2-фенилдекагидрохинолин-4-она формалином в муравьиной кислоте. Выходы продуктов метилирования: $3\alpha - 77.8\%$, $3\beta - 72.6$ и $3\gamma - 80,3\%$ соответственно.

Выходы, константы и данные элементного анализа стереоизомеров 2 α, β, γ и их гидрохлоридов приведены в табл. 1.

Список литературы

1. The skeletal structura of lobinaline / M.M. Robison, W.G. Pierson, L. Dorfman, B.F. Lamber, R.A. Lusar // J.Org. Chem. – 1966. Vol. 31, №10. – P. 3206–3213.

2. The stereochemistry and synthesis of the Lobinaline ring

systhem / M.M. Robison, B.F. Lamber, L. Dorfman, W.G. Pierson // J.Org.Chem. – 1966. – Vol. 31, №10. – P. 3220–3223.

3. Elderfild R.C., Wark B.H. Dihidroqunolines. I. The

action of metal hydrides on quaternary quinolinium salts // Acta polon.pharmac. – 1968. Vol. 25, №2. – P. 543–548.

4. Koelsch C.F., Ostercamp D.L. Synthesis of angylarly substituted octa- and decahyaroquinolines // J. Org. Chem. –

1961. - Vol. 26. - P. 1104-1106.

5. Sigumoto N., Kugita H., Fujita T. Syntheses of hydrogenated quinolines and isoquinolines as analgesics // Parm. Soc. Japan. – 1955. – Vol. 75. – P. 177–179.

6. Sigumoto N., Oshiro S. // Tetrahedron. – 1960. –

Vol. 8. – P. 296–303. 7. Murakosi J., Murata H. // Parm. Soc. Japan. – 1964. – Vol. 84, № 7. – P. 674–679.

8. Способ получения 2,4-дифенилпергидрохинолина: Авт. свид. СССР №374303 / М.Н. Тиличенко, Т.В. Москов-кина, А.П. Гилев, В.М. Куриленко.

9. Гидрохлориды эпимеров по положению 5 1,2е-диметил-транс-декагидрохинолин-4-спиро-2-(5-оксиметил-3дигидрофурана), проявляющего противоаритмическую активность, способы их получения: Авт. свид. СССР № 675825 /

A.A. Ахрем, Л.И. Ухова, Б.Б. Кузьмицкий и др. 10. Decahydroquinolinol derivatives and methods of theartining cardiac arrytmias or indysing local anaestetia with them: Патент США N_2 4332805 / Prost M., Urbain M.

11. Стереохимия азотистых гетероциклов. VI. Стерео-изомерия 2-фенилдекагидрохинолона-4 / О.Т. Жилкибаев, К.Д. Пралиев, В.Б. Рожнов, Д.В. Соколов // Изв. АН КазССР. Сер. хим. − 1984. – № 2. – С. 81–86.

12. Жилкибаев О.Т., Пралиев К.Д., Клепикова С.Г. // Химия природных и синтетических биологически активных соединений: труды ИХН МОН РК. – 2001. – Т. 76. – С. 113–115.

Рецензенты:

Курманкулов Н.Б., д.х.н., профессор, главный научный сотрудник лаборатории химии физиологически активных веществ, АО «Институт химических наук им. А.Б. Бектурова», г. Алматы;

Ю В.К., д.х.н., профессор, главный на-учный сотрудник лаборатории химии лекарственных веществ, АО «Институт химических наук им. А.Б. Бектурова», г. Алматы.

Работа поступила в редакцию 08.11.2011.