УДК 615.273′454.23.014.22.015.14′4

ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ И БИОФАРМАЦЕВТИЧЕСКОЕ ИЗУЧЕНИЕ СУППОЗИТОРИЕВ, СОДЕРЖАЩИХ АСК И ДИПИРИДАМОЛ

Глижова Т.Н., Степанова Э.Ф.

ГОУ ВПО «Пятигорская государственная фармацевтическая академия», Пятигорск elf@megalog.ru

Разработаны композитные суппозитории, содержащие кислоту ацетилсалициловую и дипиридамол, изучена их антиагрегантная активность. В результате исследований было доказано, что ректальная форма композитных суппозиториев с АСК и дипиридамолом оказывает выраженное антиагрегантное действие по сравнению с лекарственными препаратами моносостава.

Ключевые слова: композитные суппозитории, антиагрегатный эффект, ацетитилсалициловая кислота, дипиридамол, биофармацевтические исследования

Введение

В настоящее время инсульт – вторая после ишемической болезни сердца (ИБС) причина смертности в мире. Поэтому одной из основных задач современной медицины является профилактика инсульта. Достаточно много средств применяется для лечения и профилактики ССЗ, терапии ИБС, при тромбозе глубоких вен, тромбоэмболиях; применение этих препаратов для многих пациентов становится пожизненным, поэтому к их эффективности и безопасности необходимо предъявлять самые высокие требования.

Накопленные к сегодняшнему дню результаты исследований антитромбоцитарных лекарственных препаратов позволили признать назначение антиагрегантов наиболее перспективным путем профилактики и терапии сердечно-сосудистых заболеваний (ССЗ).

Цели и задачи

Подбор оптимальной основы для суппозиториев с АСК и дипиридамолом. Технология и биофармацевтическое исследование.

Результаты и их обсуждение

При разработке суппозиториев одним из значимых фармацевтических факторов, оказывающим значительное влияние на высвобождение и всасывание вещества, является основа [3, 4].

Многочисленными исследованиями доказано, что сама основа, обладая определенными функциональными свойствами, которые в различных условиях могут проявляться по-разному, контактируя с лекарственными веществами, активно действует на их высвобождение. Поэтому очень важным этапом в исследованиях является выбор основы.

При разработке суппозиториев с кислотой ацетилсалициловой и дипиридамолом к основе предъявляли такие требования, как отсутствие раздражающего действия и одновременно наличие достаточно высоких адгезивных свойств к слизистой оболочке кишечника, стабильность при хранении, совместимость с лекарственными веществами, а также способность легко их отдавать. В результате анализа литературы для проведения эксперимента были использованы основы гидрофильного и липофильного характера [4, 5]. Среди гидрофильных суппозиторных основ в отечественной и зарубежной фармации широкое применение находят полиэтиленгликоли. При разработке суппозиториев многими авторами чаще используются сплавы ПЭГ-400 и ПЭГ-1500 в соотношении 1:9 и 2:8. На основании этого и учитывая содержание лекарственных веществ, вводимых по типу суспензии, в эксперименте использовали сплавы ПЭГ-400 и ПЭГ-1500 в соотношении 2:8.

Учитывая литературные данные была использована традиционная дозировка дипиридамола. Как антиагригант кислота ацетилсалициловая действует в диапазоне доз 30 мг - 325 мг, поэтому в эксперимен-

те использовали дозу на человека 1 мг/кг и 0,5 мг/кг. Эффект дипиридамола, по данным литературы достигается уже при дозировке 0,25 мг [2]. Нами предварительно были проведены биофармацевтические исследования по выбору оптимальной основы для суппозиториев комбинированного состава, содержащих кислоту ацетилсалициловую и дипиридамол. Для этого мы использовали метод высвобождения в желатиновый гель с индикатором – раствором хлорида железа 1%.

После взаимного контакта действующих веществ с желатиновой массой наблюдали окрашенные зоны. Анализируя полученные данные, можно заключить, что оптимальные результаты в плане высвобождения обеспечивает основа ПЭГ-400 и ПЭГ-1500 в соотношении 2:8.

Биологические исследований на лабораторных животных проводились с учетом Рекомендации по этике Хельсинкской декларации Всемирной медицинской ассоциации (2000). В этой связи эксперимент спланирован на основе углубленного изучения проблемы по данным литературы; эксперимент обоснован и направлен на получение результатов, недостижимых другими методами; при проведении эксперимента были приняты меры, позволяющие избежать излишних физических страданий экспериментальных животных.

Для фармакологического исследования были разработаны экспериментальные образцы суппозиториев с разной дозировкой АСК для определения оптимального ее соотношения с дипиридамолом. Изучаемые суппозитории применяли в экспериментальной дозировке с учетом коэффициента межвидового переноса доз. С учетом коэффициента межвидового переноса доз с организма человека на крыс 0,59 изготовили лабораторные образцы суппозиториев с эквивалентным содержанием компонентов в разных дозах. Суппозитории экспериментальным животным (крысы) вводили ректально в охлажденном виде ежедневно в течение 7 дней в одно и то же время. Диаметр лабораторных образцов суппозиториев составил 2,5-2,8 мм, длина – 28-31 мм.

Наиболее эффективными оказалась суппозитории, содержащие небольшие дозы

АСК. Комбинированные суппозитории с содержанием аспирина 0,89 и дипиридамола 0,6 проявили наиболее благоприятный фармакологический эффект, интегрируя специфическое действие при минимизации отрицательного побочного воздействия.

Для идентификации АСК и дипиридамола, а также продуктов их деструкции был использован метод хроматографии в тонком слое сорбента. Был изучен ряд систем, содержащих полярные и неполярные растворители.

Ha хроматографическую пластинку «Сорбфил» наносили по 1 мкл 0,1%-ных растворов АСК, кислоты салициловой (СК) – продукта её деструкции, и 0,01%-ных раствора дипиридамола в спирте этиловом 95%-ном. Пятна высушивали на воздухе и хроматографировали восходящим способом. Хроматограмму высушивали и проявляли в сначала в УФ-свете (254 нм). Дипиридамол обнаруживали по ярко-зеленой флуоресценции на фиолетовом фоне. Затем хроматограмму обрабатывали раствором хлорида железа (III) с последующим нагреванием в сушильном шкафу при температуре 105°C в течение 5 минут. СКА и СК обнаруживали по появлению фиолетовых пятен на желтом фоне. Значения Rf приведены в табл. 1.

Для определения предела обнаружения на хроматографическую пластинку наносили микрошприцем по 0,1; 0,2; 0,3;1,0 мкл 0,1%-ного растворов АСК и СК и такие же количества 0,01%-ного раствора дипиридамола. Хроматографировали по описанной выше методике и проявляли. Установленные пределы обнаружения приведены в табл. 2.

Для изучения продуктов деструкции проведено термическое разложение лекарственных веществ. Индивидуальные лекарственные вещества и искусственную смесь, содержащую 0,070 г АСК и 0,025 г дипиридамола помещали в бюксы и нагревали в сушильном шкафу при температуре 105°С. Отбор проб проводили через 1 час, 3 часа, 6 часов, 24 часа, 36 и 48 часов. Отбирали по 0,01 г каждого лекарственного вещества из пробы, растворяли в 10 мл спирта этилового 95% и наносили по 1 мкл на хроматогра-

Таблица 1

Выбор системы растворителей

Состав ометоми	Rf		
Состав системы	дипиридамол	КАС	КС
Хлороформ-ацетон-ледяная уксусная кислота (10:10:0,2)	0,35	0,51	0,21
Хлороформ-ацетон-ледяная уксусная кислота (19:0,2:0,8)	0	0,49	0,43
Хлороформ-ацетон (1:1)	0,24	0,19	0,15
Этанол-вода-25%-ный раствор гидроксида аммония			
(25:0,3:0,25)	0,95	0	0,30
Хлороформ-этанол-ледяная уксусная кислота (19:2,5:2,5)	0,56	0,61	0,45
Хлороформ-этанол-ледяная уксусная кислота (95:1:4)	0,84	0,87	0,80
Этанол	0,73	0,68	0,61
Хлороформ-ацетон-ледяная уксусная кислота (5:15:0,2)	0,66	0,70	0,68

Таблица 2 Пределы обнаружения лекарственных веществ

Лекарственное вещество	Предел обнаружения в мкг
Дипиридамол	0,1
ACK	10
СК	1

фическую пластинку. Параллельно наносили пятна свидетелей – такие же количества растворов СО лекарственных веществ и искусственной смеси ингредиентов. Хроматограммы рассматривали в УФ-свете и после обработки раствором хлорида железа (III).

Установлено, что через 1 час термического разложения в АСК и в смеси ингредиентов были обнаружены пятна с Rf = 0.21, соответствующие кислоте салициловой.

Заключение

Проведенные исследования продемонстрировали перспективность разработанной лекарственной формы для дальнейшего более подробного исследования в экспериментальной и клинической фармакологии, конечной целью которых является выпуск лекарственного препарата суппозиториев, содержащих АСК с дипиридамолом.

Список литературы

- 1. Барене И.А. Разработка ректальной формы производного дигидронитидина сердечно-сосудистого действия / И.А. Барене, И.Н. Консантинова, В.Г. Микожан // Актуальные вопросы фармацевтической жизни и практики: тез. докл. В 2 ч. Ч.1. Курск, 1991. С. 136–137.
- 2. Большаков О.П. Дидактические и этические аспекты проведения исследований на биомоделях и на лабораторных животных / О.П. Большаков, Н.Г. Незнанов, Р.В. Бабаханян // Качественная клиническая практика. 2002. N 1.
- 3. Головин В.А. Лекарственные средства для ректального введения / В.А. Головин, Л.А. Пешехонтова, Е.Н. Лукаш // Врачебное дело. 1984. 11. —
- 4. Гуревич, К.Г. Клиническое применение дипиридамола // Вопросы биологи-

5. Козлова Н.Г. Некоторые особенности создания лекарственных свойств в форме суппозиториев / Н.Г. Козлова, Е.Е. Зама-

раева, Л.И. Драник // Фармация. – 1992. – Т. 41, № 6. – С. 80– 83.

6. Ушкалова Е.А. Ацетилсалициловая кислота в первичной и вторичной профилактике инсульта // Фарматека. —2007. —№ 15. —С. 15—21.

PHARMACOLOGICAL RESEARCHES COMPOSIT SUPPOSITORIES CONTAINING ACID ACETILSALICYLICI AND DIPIRIDAMOLI

T.N. Glizhova, E.F. Stepanova

GOU VPO Pyatigorsk state pharmaceutical academy Roszdrava, Pyatigorsk elf@megalog.ru

Have been developed composit suppositories containing acid acitilsalicylici and dipiridamoli, is studied them antiagregantical activity. As a result of researches it has been proved that rectal the form composit suppositories with KAC and dipiridamoli renders expressed antiagregantical action in comparison with monopreparations.

Keywords: composite suppositories, antiplatelet effect, acetylsalicylic acid, dipiridamole, biopharmaceutical research