отслойка хитиновой оболочки, прорыв кисты в бронх, прорыв кисты в плевральную полость и нагноение кисты. Наиболее частыми клиническими проявлениями осложнения оказались: кашель с мокротой (81,6%) и боли в груди (67, 7%), температура (61,4%), одышка (34,6%), аллергический дерматоз (8,6%).

Основной и широкодоступный метод диагностики эхинококкоза лёгких - рентгенологический, который позволило распознать осложнения у 84,0 % пациентов. В нашем материале рентгенологический симптом «полумесяца» встречался у 7,1 % больных, «плавающая мембрана» - у 8,8 %, «свернувшаяся мембрана» - у 17,5 %, «калейдоскоп» у 3,5 % и симптом « двойная арка» - у 2,7 % пациентов.

Наиболее ценным из рентгенологических методов, бесспорно, является компьютерная томография (КТ). При отслойке хитиновой оболочки характерной чертой является двухконтурность стенки жидкостного образования, которая создаётся фиброзной и хитиновой оболочками плотностью 134 — 156 МЕ, а между ними тонкая прослойка воздуха с отрицательной плотностью и жидкости с плотностью 36 — 48 МЕ. У 89,2 % пациентов на трёхмерном изображении КТ, прослойка воздуха располагалась в верхнем полюсе кисты при любом положении тела, а у 10, 8 % в нижнем полюсе - «зеркальный симптом полумесяца». При перфорации кисты в бронх в раннем периоде характерным симптомом является « плавающая мембрана», в более позднем периоде — «свернувшаяся мембрана».

УЗИ за последние годы становится перспективным методом диагностики эхинококкоза лёгких. Для каждого вида осложнений имеются характерные симптомы, в какой то мере, схожие с рентгенсимтпомами. При отслойке хитиновой оболочки определялся «зеркальный симптом полумесяца» - наличие прослойки воздуха между двумя линейными контурами жидкостного образования лёгкого в нижнем полюсе. При прорыве кисты в бронх эхотомоскопически в лёгком определялась полость с чёткой стенкой, а на дне полости жидкость и бесформенная тень, которая меняла свою форму от положения тела.

Диагностическая видеоторакоскопия (ВТС) выполнялась при гидропневмотораксе, оказалась самым ценным методом диагностики (100,0 %) при прорыве кисты в плевральную полость и завершалась лечебной процедурой: 4 пациентам удалена хитиновая оболочка, 6 – ликвидирован фибриноторакс, и завершалась адекватным дренированием плевральной полости, что имело большое значение для предоперационной подготовки перед радикальной операцией.

Из серологической реакции для дифференциальной диагностики применяли иммуноферментный анализ (ИФА) на наличие антител к эхинококкозу, который оказался положительным у 87,4 % больных и является специфическим количественным и качественным тестом.

Фибробронхоскопия оказалась эффективной при прорыве кисты в бронх в предоперационной подготовке. У 2-х пациентов жёстким бронхоскопом удалось убрать хитиновую оболочку, обтюрирующий просвет сегментарного бронха.

Из лабораторных анализов полезной оказалась гемограмма, при котором у 77,2 % больных отмечено

повышение СОЭ, у 36,0 % - лейкоцитоз и у 38,6 % - эозинофилия. Применение этих методов диагностики позволило правильной диагностике у 94, 6 % больных с осложненным эхинококкозом лёгких.

200 больным выполнена плановая операция. Показанием к срочным операциям у 12 пациентов явились преперфоративное состояние напряжённых кист большого объёма, а 2-е больных с прорывом кисты в плевральную полость, который произошёл в клинике, оперированы экстренно.

214 больным выполнено 225 операций, из них 214 радикальных и 11 – с целью улучшения общего состояния и предоперационной подготовки.

Закрытый капитонаж фиброзной полости по Дельбе выполнен 39 пациентам, вворачивание краёв в фиброзную полость — 25, резекция лёгкого — 18 и полузакрытый капитонаж - 12 больным. В ближайшем послеоперационном периоде у 37,0 % наблюдались различные осложнения.

Учитывая эти осложнения, в клинике разработан и с успехом применяется вариант капитонажа фиброзной полости больших и осложнённых эхинококковых кист вертикальными перекрёстными швами. Сущность его заключается в накладывании перекрёстных швов на противоположные стенки полости переходя то на одну, то на другую стенку синтетической ниткой между двумя атравматическими иглами, начиная накладывать швы со дна полости по направлению к периферии переходя то на одну, то на другую стенку на высоту 1,5 – 2,0 см. так, чтобы выкол одной стенки и вкол противоположной стенки находились на одном уровне. Последние выколы обоих концов нити должны выходить на поверхность лёгкого на 1 см. от края фиброзной полости. Так накладывают 3 - 4 шва в зависимости от размера полости. С учётом высоты стенок фиброзной полости могут быть 2 - 4 этажные швы т. е. от 2-х до 4-х перекрёстов ниток. Этим способом 88 больным выполнен закрытый капитонаж, 12 – полузакрытый вариант капитонажа. Послеоперационные осложнения у этой группы больных составили 8,9 %.

14 больным выполнена закрытый капитонаж перекрёстным ушиванием фиброзной полости через миниторакотомию с видеоассистированной торакоскопией (ВАТС) без послеоперационных осложнений.

Таким образом, диагностика осложненного эхинококкоза лёгких должно быть комплексным, а вариант закрытого капитонажа фиброзной полости является методом выбора при лечении больших и осложнённых эхинококковых кист лёгкого.

КОРРЕКЦИЯ РЕАМБЕРИНОМ ПРОЦЕССОВ СВОБОДНОРАДИКАЛЬНОГО ОКИСЛЕНИЯ ПРИ ГАСТРОДУОДЕНАЛЬНЫХ КРОВОТЕЧЕНИЯХ

Моргунов С.С. Городская клиническая больница №2, Ижевск

Острая кровопотеря при язвенных гастродуоденальных кровотечениях (ЯГДК) остается важнейшей проблемой экстренной хирургии желудочно - кишеч-

ного тракта. Несмотря на успехи анестезиологии и реаниматологии, общая летальность при этой патологии не имеет тенденции к снижению (А.А. Гринберг, 1995). Патологические эффекты острой кровопотери связаны с активацией симпатической и эндокринной систем, нарушением микроциркуляции, ишемией и развитием гипоксии органов и тканей (В.В. Мороз и соавт., 2002). В условиях гипоксии и энергодефицита нарушается утилизация кислорода, что приводит к повышению уровня гидроксильных, супероксидных и пероксидных радикалов, активации свободнорадикального окисления (CPO) (R. Kentner et al., 2002). Если в физиологических условиях продукты перекисного окисления липидов (ПОЛ) вырабатываются во всех клетках как звено аэробного метаболизма и контролируются антиоксидантной системой (АОС), то при критических условиях гомеостаза возникает дисбаланс системы ПОЛ-АОС. Усиление окислительных процессов при недостаточности системы антиоксидантной защиты (АОЗ) ведет к развитию "окислительного стресса", являющегося одним из основных механизмов повреждения биологических мембран (Ю.Н. Шанин и соавт., 2003). Перспективным направлением в коррекции СРО является использование в интенсивной терапии антиоксидантов, в том числе препаратов, обладающих антигипоксантными и антиоксидантными свойствами и включающих в себя соли янтарной кислоты (ЯК) (М.Г. Романцов и соавт., 2000; В.В. Афанасьев, 2005). Новым антигипоксантомантиоксидантом и энергопротектором для инфузионной терапии, содержащим ЯК, является отечественный препарат Реамберин (НТФФ "Полисан", СПб).

показатель

I_{max}, мВ

Таблица 1. Динамика показателей интенсивности ПОЛ ным индуцированной XЛ), (М±m)

1-я S, мВ сек $39,2\pm0,4$ 2-я 1-я tg α, мВ/сек $45,3\pm0,5$ 2-я 40.1 ± 0.4^{x}

контроль

 17.3 ± 0.3

группа

1-я

2-я

ний (I этап); z - p<0,05 между 1-й и 2-й группами. При поступлении активация ПОЛ и снижение ан-

тиоксидантной активности (АОА) плазмы крови отмечается у всех пациентов, что свидетельствует об интенсификации при геморрагическом шоке и острой кровопотере процессов СРО и снижении АОА плазмы по сравнению с контрольной группой. Несмотря на интенсивную терапию, у пациентов 1-й и 2-й групп интенсивность XЛ на II этапе достоверно увеличивается (p < 0.05), вероятно, за счет увеличения поступления продуктов ПОЛ из перенесших эпизод ишемии и гипоксии тканей в период раскрытия микроциркуляционного русла. На этом этапе, в результате восполнения ОЦК и устранения периферического спазма, последующая реперфузия и реоксигенация ишемизированных тканей сопровождается увеличением I_{max} и S, а в группе Реамберина, их повышение ниже

Цель настоящего исследования

Изучение клинической эффективности применения Реамберина в коррекции СРО и его влияния на АОЗ у больных с острой кровопотерей тяжелой степени язвенной этиологии.

Материал и методы

Обследовано 36 пациентов с ЯГДК в возрасте от 17 до 80 лет с признаками геморрагического шока (дефицит ОЦК – 30-40% и ГО – 50-60%). Основная группа (n = 16) состояла из пациентов, которым одновременно с традиционной терапией проводили инфузию Реамберина 1,5 % в объеме 800 мл в сутки (1-я группа), и группа сравнения (2-я группа, n = 20), лечение которой проводили по общепринятой схеме. Контролем служили 30 условно здоровых лиц того же возраста и сопутствующей патологии. В исследовании выделены этапы: при поступлении - I этап, II через 24 часа, III – через 48 часов, IV – через 72 часа. Для оценки суммарного состояния СРО использовали методику регистрации активированной перекисью водорода хемилюминесценции (ХЛ) в присутствии двухвалентного железа. На биохемилюминометре БХЛ-06М определялась максимальная интенсивность быстрой вспышки (I_{max}, мВ), светосумма (S, мВ·сек), tg α - характеризующий скорость реакций обрыва свободнорадикальных процессов.

Результаты и обсуждение

У больных при острой кровопотере язвенной этиологии на фоне расстройств гемодинамики, микроциркуляции и метаболизма повышается интенсивность ПОЛ и угнетается система АОЗ, возникает дисбаланс в системе ПОЛ-АОС.

сти ПОЛ и АОА плазмы крови в исследуемых группах (по дан-									
этапы исследования									
I	II	III	IV						
18,9±0,1 ^x 19,1±0,4 ^x	20,0±0,4 ^{xy} 20,7±0,2 ^{xy}	19,1±0,3 ^{xz} 20,1±0,3 ^{xz}	18,0±0,1 ^{yz} 19,3±0,3 ^{xz}						
$42,1\pm0,5^{x}$ $42,0\pm0,2^{x}$	43,9±0,6 ^{xy} 44,3±0,2 ^{xy}	39,5±0,6 ^{yz} 43,0±0,2 ^{xyz}	40,0±0,4 ^{yz} 42,2±0,1 ^{xz}						
40,2±0,5 ^x	43,9±0,4 ^{yz}	42,2±0,4 ^{xyz}	42,1±0,4 ^{xyz}						

Примечание. Достоверность различий: x - p < 0.05 от нормы (группы контроля); y - p < 0.05 от исходных значе-

 $42,0\pm0,4^{xyz}$

(p<0,05). В течение последующего периода в группе, где в терапии использовался Реамберин, значительно и достоверно (p<0,05) снижаются процессы СРО, повышается АОА.

 $41,1\pm0,2^{xyz}$

 $40,9\pm0,4^{xz}$

Выводы

У пациентов с острой кровопотерей язвенной этиологии повышается интенсификация ХЛ. Применение Реамберина в интенсивной терапии пациентов с ЯГДК повышает активность АОС, способствует снижению интенсивности СРО и ПОЛ.

КОРРЕКЦИЯ РЕАМБЕРИНОМ ТКАНЕВОЙ ГИПОКСИИ ПРИ ОСТРОЙ КРОВОПОТЕРЕ

Моргунов С.С.

Городская клиническая больница №2, Ижевск

Проблема фармакологической коррекции гипоксических состояний, возникшая в середине XX века, в настоящее время относится к числу наиболее актуальных. Это объясняется универсальностью патологических процессов, характерных для любой формы гипоксии. Одним из примеров возникновения смешанной гипоксии в клинической практике, является острая кровопотеря язвенной этиологии.

Цель исследования

Изучение влияния субстратного антигипоксанта Реамберина на тканевую гипоксию (ТГ) у больных с острой кровопотерей при язвенных гастродуоденальных кровотечениях (ЯГДК).

Материал и методы

Обследовано 36 пациентов с ЯГДК в возрасте от 17 до 80 лет, поступивших в экстренном порядке с тяжелой степенью кровопотери (дефицит ОЦК - 30-40% и глобулярного объема – 50-60%). В процессе исследования были выделены две группы, сравнимые по полу, возрасту, сопутствующей патологии. Основная группа (n = 16) состояла из пациентов, которым одновременно со стандартной терапией проводили инфузию Реамберина 1.5 % в объеме 800 мл в сутки (1-я группа), и группа сравнения (2-я группа, n = 20), лечение которой проводили по традиционной схеме. Контролем (n = 30) служили здоровые лица того же возраста. В исследовании выделены этапы: при по-

ступлении – I этап. II – через 24 часа, III – через 48 часов. IV – через 72 часа.

Исследование системной гемодинамики проводили неинвазивным способом - методом интегральной реографии тела по М.И. Тищенко. Газовый состав определяли из проб артериальной и венозной крови газоанализатором "Easy Blood Gas" (США). На основании полученных данных рассчитывали (Г.А. Рябов, 1988) показатели кислородтранспортной функции крови: содержание кислорода (О2), артериовенозную разницу ($C(a-v)O_2$), доставку (DO_2) и потребление (VO₂) кислорода. Определялся уровень лактата венозной крови.

Результаты и обсуждение

Результаты проведенных исследований приведены в таблице. На момент поступления в реанимационное отделение у всех пациентов наблюдалась низкая кислородная емкость крови (77,8±5,9 мл/л в основной группе и 85,0±4,6 мл/л в группе сравнения), а недостаточность тканевого компонента DO2 характеризовалась снижением VO2 и C(a-v)O2 за счет артериовенозного шунтирования. Уже через сутки терапии Реамберином в основной группе наблюдалось достоверное повышение VO₂, тогда как во 2-й группе увеличения этих показателей не было. На IV этапе исследования показатели VO₂ и C(a-v)O₂ в 1-й группе были в пределах нормальных величин, а в группе сравнения оставались низкими, что свидетельствовало о продолжающемся тканевом дисбалансе метаболических систем, перенесших эпизод ишемии и тканевой гипоксии. Данные изменения свидетельствуют о том, что Реамберин обеспечивает не только энергостимулирующее воздействие на уровне клетки, но и повышает утилизацию O_2 в условиях $T\Gamma$.

Таблица 1. Динамика показателей кислородного оаланса и лактата на этапах исследования, (М±m)								
			этапы исследования					
показатель	контроль	группа	I	II	III	IV		
CaO ₂ ,	190,1±3,6	1-я	77,8±5,9 ^x	107,0±5,4 ^{xy}	115,0±5,3 ^{xyz}	122,0±3,7 ^{xyz}		
мл∙л -1		2-я	$85,0\pm4,6^{x}$	$107,3\pm4,3^{xy}$	$103,7\pm3,5^{xyz}$	$112,3\pm3,1^{xyz}$		
$C(a-v)O_2$	47,3±2,6	1-я	$36,0\pm2,6^{x}$	$44,0\pm1,8^{y}$	41,6±2,1	$46,0\pm1,7^{yz}$		
мл∙л -1		2-я	$36,2\pm3,0^{x}$	40,0±3,1	$38,0\pm1,9^{x}$	$40,7\pm2,2^{z}$		
DO_2 ,	1056,0±43,8	1-я	$376,2\pm27,2^{x}$	540,9±38,9 ^{xy}	599,5±41,5 ^{xyz}	648,3±44,4 ^{xyz}		
мл∙мин -1		2-я	$411,9\pm21,2^{x}$	$517,1\pm24,2^{xy}$	$499,7\pm27,9^{xyz}$	$534,6\pm21,7^{xyz}$		
VO ₂ ,	258,7±15,4	1-я	$173,9\pm12,0^{x}$	$217,7\pm9,0^{y}$	211,4±9,3 ^{xy}	244,0±17,2 ^{yz}		
мл∙мин -1		2-я	$175,4\pm13,7^{x}$	$191,3\pm15,2^{x}$	$182,6\pm11,7^{x}$	$193,0\pm11,8^{xz}$		
pvO ₂ ,	33,5±2,1	1-я	27,9±1,0	33,9±1,4 ^y	$32,4\pm1,1^{y}$	$31,7\pm0,8^{y}$		
мм рт. ст.		2-я	$29,8\pm1,6$	$36,3\pm2,0^{y}$	$34,5\pm0,8^{y}$	33,0±1,5		
SvO ₂ ,	70,9±1,7	1-я	$49,7\pm0,7^{x}$	$55,5\pm1,6^{xy}$	$59,9\pm1,6^{xy}$	$60,5\pm1,4^{xy}$		
%		2-я	$52,5\pm1,9^{x}$	$59,5\pm2,9^{xy}$	$59,3\pm1,0^{xy}$	$59,7\pm1,8^{xy}$		
лактат,	1,31±0,07	1-я	$2,64\pm0,06^{x}$	$3,40\pm0,10^{xy}$	$2,33\pm0,05^{xyz}$	$1,33\pm0,05^{yz}$		
ммоль/л		2-я	$2,61\pm0,06^{x}$	$3,47\pm0,06^{xy}$	$2,69\pm0,07^{xz}$	$2,44\pm0,06^{xyz}$		

Примечание. Достоверность различий: x - p < 0.05 от нормы (группы контроля); y - p < 0.05 от исходных значений (I этап); z - p<0,05 между 1-й и 2-й группами.

Нарушение утилизации и использования О2 при поступлении подтверждалось повышением уровня лактата до 2,64±0,06 ммоль/л. Несмотря на интенсивную терапию, у всех пациентов на II этапе концентрация лактата увеличивается, вероятно, за счет поступления из перенесших ишемию и гипоксию тканей, в период раскрытия микроциркуляционного русла. Но, уже на 2-е сутки, на III этапе, в группе, получавшей

Реамберин, концентрация лактата снижалась значительно быстрее (p<0,05), по сравнению со 2-й группой, и к IV этапу сравнивалась с контрольной группой. К концу исследования в группе сравнения лактат оставался высоким в 1,8 раза.

Выводы

Повышение содержания лактата в венозной крови пациентов с острой кровопотерей подтверждает