В работе исследовалось влияние лазерной обработки поверхности и хромовых покрытий на долговечность и ползучесть сталей аустенитного и перлитного классов. Количественный анализ ЗГП осуществлялся по методу Мак-Лина. Испытания проводились в вакууме не ниже 10~Па. Температура испытания (850 - 950 $^{\circ}\text{C}$) не превышала температуру рекристаллизации пиролитических хромовых покрытий.

Установлено, что лазерная обработка приводит к существенному увеличению стойкости исследованных стальных изделий.

Так, например, стойкость изделий из стали 1X18H9T после лазерной обработки возрастает ~ в 2,5 раза. А упрочнение поверхностного слоя покрытием из МОС толщиной $\boldsymbol{d}_{no\kappa p} = 5 - 7 \mathit{мкм}$ увеличивает их стойкость в ~ 10 раз. Скорость ползучести при этом уменьшается от $e = 0.035 \mathit{muh}^{-1}$ до $e = 0.0034 \mathit{muh}^{-1}$.

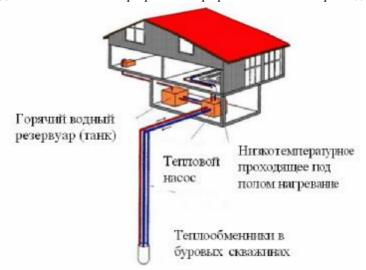
Повышение стойкости при высокотемпературной ползучести можно объяснить следующим образом. Поверхностное покрытие из МОС хрома при даль-

нейшем нагреве упрочняет поверхностный слой металла за счет диффузии хрома в основной материал. Упрочнение поверхностного слоя ведет к уменьшению деформации как за счет скольжения, так и за счет ЗГП. Снижение скорости ЗГП приводит к замедлению процесса образования и роста трещин и, как следствие, к увеличению долговечности. Этот способ упрочнения дает максимальный эффект. При этом при нагреве до $950\,^{\circ}C$ отсутствуют рекристаллизационные процессы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грант Н. Разрушение в условиях высокотемпературной ползучести.- В кн.: Разрушение./Под ред. Либовица Г.- М.: Мир,1976, т.3, - С. 528-578.
- 2. Лихачев В.А. Повреждаемость металлов в условиях длительного нагружения. В кн.: Радиационная физика металлов и сплавов.: Материалы научного семинара, Бакуриани, 1976, С. 177-212.

Природно-ресурсный потенциал Сибири


ПРИПОВЕРХНОСТНЫЕ ГЕОТЕРМАЛЬНЫЕ РЕСУРСЫ ЗАПАДНО-СИБИРСКОЙ ПЛАТФОРМЫ

Богуславский Э.И., Смыслов А.А., Вайнблат А.Б., Фицак В.В. Санкт-Петербургский государственный горный институт (технический университет), Санкт-Петербург

Геотермальные приповерхностные теплонасосные установки (GHP) - одно из наиболее быстро рас-

тущих направлений применения возобновляемой энергии в мире, с ежегодными приростом в 30 странах мира за прошлые 10 лет приблизительно на 10 %.

GHP (рис.) используют относительно постоянную температуру поверхностных слоев земли, чтобы обеспечить отопление, кондиционирование и горячее водоснабжение для домов, школ, правительственных и коммерческих зданий. Сравнительно маленький расход электроэнергии для работы этой установки, обеспечивает энергетическую продукцию в три - четыре раза больше этого расхода.

Рисунок 1. Типичное применение домашней системы теплоснабжения с геотермальным тепловым насосом в Центральной Европе (глубина скважин около100 м)

Главное преимущество приповерхностных геотермальных ресурсов состоит в том, что используется температура пород или грунтовых вод (приблизительно между 5 и 30 0 C) на глубинах от 50 до 300 м,

которые являются доступными во всех странах мира. За последние 10 лет, GHP утвердились как существенный участник в "новом" и "альтернативном" сценарии развития мировой энергетики.

Весьма важным преимуществом этого источника энергии является сокращение эмиссии CO_2 . При оценке мировой экономии органического топлива в т.о.е. (тоннах нефтяного эквивалента) и потока CO_2 , за счет работы геотермальных теплонасосных установок может быть сделано несколько предположений. Если ежегодное использование геотермальной энергии - 28 000 ТДж (7 800 ГВт.ч) сравнить с производством тепловой энергии станциями, использующим топливную нефть с 30%-ой эффективностью, то экономия составит - 15,4 миллиона баррелей нефти или 2,3 миллионов т.о.е. Это исключит выброс приблизительно 7 миллионов тонн CO_2 .

Западно-Сибирская молодая платформа (площадью около 1,9 млн. км²) приурочена к одной из величайших равнин земного шара и относится к крупнейшим седиментационным бассейнам мира. Естественными границами Западно-Сибирского седиментационного бассейна являются: на западе горные сооружения Урала и Пай-Хая, на юге Казахская и Алтае-Саянская складчатые системы и на востоке - Сибирская платформа. Платформа и приуроченная к ней одноименная нефтегазоносная провинция охватывает полностью или частично следующие края и области: Тюменскую область с Ямало-Ненецким и Ханты-Мансийским автономными округами, Омскую, Новосибирскую и Томскую области и Красноярский край.

Для геолого-экономической оценки приповерхностных ресурсов геотермальной энергии авторами была создана методика подсчета и районирования этих ресурсов. При оценке территории Западной Сибири основой послужили фактические данные, полученые в результате бурения и изучения скважин на исследуемой территории: температура, тепловой поток, глубина скважин, мощность пород.

Оценка приповерхностных геотермальных ресурсов осуществлялась для северной и южной части Западной Сибири на глубину до 300 м (таблица).

Таблица 1. Предварительная оценка приповерхностных геотермальных ресурсов Западной Сибири, млн.т у.т.

Область распро- странения	Глубина распространения, м					
	0-100		0-200		0-300	
	без замо- раж. мас- сива	с замораж. массива	без замо- раж. масси- ва	с замораж. массива	без замо- раж. масси- ва	с замораж. массива
Северная часть	20,253	131,645	60,759	283,542	121,518	455,693
Южная часть	43,000	161,250	193,500	430,000	516,000	870,750
Всего	63,253	292,895	254,259	713,542	637,518	1326,443

При сопоставительной оценке наиболее благоприятными условиями освоения геотермальной энергии характеризуется южная часть Западной Сибири, где температура нейтрального слоя является максимальной и существенно выше температуры пород на глубине до 300м.

Проведенное районирование и картирование территории Западной Сибири обеспечивает возможность лишь предварительной оценки освоения приповерхностных геотермальных ресурсов для теплоснабжения потребителей, а также выбора благоприятных участков и перспективных объектов строительства геотермальных теплонасосных установок.

ИСПОЛЬЗОВАНИЕ ПРОМЫШЛЕННЫХ ОТХОДОВ СИБИРИ

Макарова Е.И., Абу-Хасан Махмуд, Старинец М.С., Бенза Е.В. Петербургский Государственный Университет Путей Сообщения, Санкт-Петербург

На сегодняшний день состояние промышленности таково, что только 2% потребляемых природных ресурсов превращается в конечную продукцию, все остальное переходит в отходы. На территории России накоплено более 80 млрд. т отходов.

Сибирь в настоящее время дает большую часть всех производимых в России энергоресурсов: 67% нефти, 92% газа, 64% угля, 29% электроэнергии. Эксплуатация природных богатств региона породила ряд достаточно острых проблем.

Преобладание предприятий цветной металлургии, химических, нефте- и лесохимических производств привело к катастрофическому загрязнению окружающей среды. Особенно остро экологические проблемы проявляются в городах, перенасыщенных промышленными предприятиями (Новокузнецк, Братск, Красноярск, Челябинск и др.), где значительное загрязнение окружающей среды происходит в результате деятельности металлургических производств. Из-за специфики высокотемпературной технологии восстановления руд (1500...2000 °C) предотвратить загрязнение практически невозможно. Например, при производстве ферросилиция и кристаллического кремния в процессе выплавки металла образуются в больших количествах газообразные вещества и пылевидные отходы. Источниками последних являются частицы загружаемого сырья и продукты плавки, а также продукты реакций, происходящих в высокотемпературной зоне.