расчета. Автоматизация расчета материальноэнергетических потоков является важным компонентом проектирования, однако при этом необходимо не
только формализовать схему, но и предложить типовые подходы к ее реализации. Так, в основе математического описания подобных систем используются
матрично-топологические методы. Матричные методы расчета предлагают лишь "работоспособное" решение, но не оптимальное. Однако они имеют и ряд
преимуществ:

такие модели позволяют, формализуя процесс расчета материальных и тепловых потоков, внедрить средства автоматизации вычислений;

позволяют быстро проанализировать систему при различных граничных условиях и получать ответить на вопрос: "А что, если..."; особенно это важно для производств с изменяющейся загрузкой;

возможно построить систему ежедневного контроля и корректировки технологических потоков, учета продукции, сырьевых и др. потерь;

являются необходимым элементом к формированию оптимизационных моделей;

в совокупности с информационными и финансовыми потоками позволяют разработать модель управления СТПС.

В промышленности для расчета технологических потоков используются такие пакеты, как Trace Mode, Sigmafile, DATACON, Production Balance, ARPM, IPM+ и др. Однако их адаптация для решения задач в области строительных технологий и связанные с этим большие временные затраты, значительная стоимость затрудняют широкое внедрение этих пакетов в разделы курсового и дипломного проектирования для студентов строительных вузов. Наш опыт показывает, что в учебном процессе для этих целей могут быть использованы общие пакеты типа электронной таблицы Microsoft Excel и математического пакета Math-CAD [5], тем более, что эти пакеты студенты осваивают в ходе изучения курсов компьютерных и информационных технологий.

Математическое моделирование материальных и энергетических потоков СТПС включает в себя (помимо уравнений материальных и энергетических балансов) топологическое описание конфигурации технологической схемы, в основе которого находится понятие графа [6].

СПИСОК ЛИТЕРАТУРЫ

- 1. Кафаров В.В., Перов В.Л., Мешалкин В.П. Принципы математического моделирования химикотехнологических систем. М.: Химия, 1974.
- 2. Васильков Ю.В., Василькова Н.Н. Компьютерные технологии вычислений в математическом моделировании: Учебное пособие. М.: Финансы и статистика, 1999.
- 3. Демидович Б.И., Марон И.А. Основы вычислительной математики М.: Наука, 1996.
- 4. Евдокимов А.Г., Дубровский В.В., Тевяшев А.Д., Потокораспределение в инженерных сетях. М.: Стройиздат, 1979.
- 5. Дьяконов В.П. Абраменкова И.В. MathCAD 7.0 в математике, физике и Интернете. М.: Нолидж, 1999.

6. Евстигнеев В.А., Касьянов В.,Н. Теория графов: алгоритмы обработки деревьев. - Новосибирск: Наука, 1994.

ГЕРМЕТИЗАЦИЯ МИКРОПОРИСТОСТИ В ДЕТАЛЯХ, ИЗГОТОВЛЕННЫХ МЕТОДОМ ПОРОШКОВОЙ МЕТАЛЛУРГИИ

Суслина С.В. Марийский Государственный Технический Университет, Йошкар-Ола

Современное машиностроение широко использует детали из порошковых материалов. Методы порошковой металлургии позволяют создавать принципиально новые материалы, которые сложно или даже невозможно получить другими способами. Порошковая металлургия дает возможность свести к минимуму отходы металла в стружку, упростить технологию изготовления деталей и снизить трудоемкость их производства.

Порошковые материалы находят применение во многих отраслях современной промышленности: авто- и авиастроении, сельском хозяйстве, медицине, пищевой промышленности и т. д. Но с повышением спроса растут и требования, предъявляемые к изделиям. Возникает необходимость в создании новых технологий, позволяющих повысить надежность и долговечность деталей.

Одним из недостатков изделий, изготовленных методами порошковой металлургии, является их высокая склонность к коррозии, обусловленная высокой пористостью после спекания. Микропоры в деталях, изготовленные методом порошковой металлургии, могут приводить к ухудшению характеристик сделанных далее деталей, вплоть до их полной непригодности в эксплуатации. Для уменьшения пор в деталях увеличивают их плотность, давление при прессовании, уменьшают размеры частиц порошка.

В настоящее время микроскопические поры могут быть легко устранены с помощью пропитки различными полимерными веществами или смесями, изготовленными на их основе. Также для уменьшения коррозионных процессов, увеличения срока службы изделий и улучшения технологических свойств детали подвергаются самопроизвольной пропитке различными маслами с использованием примесей, таких как медь, графит, дисульфид молибдена.

Полимерное заполнение пор деталей, изготовленных методом порошковой металлургии, является важной предварительной операцией, осуществляемой перед проведением окончательной обработки, а также перед нанесением гальванического, лакокрасочного покрытия и других методов чистовой отделки, значительно улучшающей эксплуатационные характеристики изделий. Детали, изготовленные методом порошковой металлургии, подвергаются пропитке для герметизации пор с целью предотвращения попадания растворов в поры и для защиты от дальнейшей коррозии

Технологические приемы, используемые при получении материалов методом пропитки, отличаются

главным образом способами создания давления, которое должно обеспечить заполнение пор в порошковых формовках. При самопроизвольной пропитке это давление создается без приложения внешних сил. Самопроизвольная пропитка пористых материалов осуществляется при полном их погружении в пропитывающую жидкую фазу.

Для интенсификации процесса пропитки материалов можно использовать ультразвук. Под действием ультразвуковых колебаний значительно увеличивается скорость движения пропитывающего вещества и глубина заполнения пор. В ультразвуковом поле изделия пропитываются в несколько раз быстрее, чем при самопроизвольной пропитке. Эти факторы, а также простота и технологичность процесса, позволяют включить ультразвуковую пропитку в поточную линию производства изделий из порошков без дополнительных затрат.

АНАЛИЗ ДЕФЕКТНОСТИ ГОРЯЧЕКАТАНОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ВЫСАДКИ МЕТИЗОВ

Филиппов А.А., Пачурин К.Г., Гущин А.Н., Пачурин Г.В. Нижегородский государственный технический университет, Нижний Новгород

Эксплуатационные свойства наиболее распространенных и ответственных в машиностроении крепежных изделий, получаемых холодной высадкой из калиброванного металлопроката, во многом определяются как природой материала, так и качеством исходной металлопродукции.

Стали для производства метизов должны обладать необходимым комплексом технологических и эксплуатационных качеств. Для изготовления крепежа методом холодной высадки используются конструкционные углеродистые стали с содержанием углерода не выше 0,5 %. При этом стали кипящие, полуспокойные и спокойные применяются если содержание углерода до 0,24 %, и только спокойные, если большее содержание углерода и присутствуют легирующие элементы. Спокойные стали, раскисленные алюминием, характеризуются повышенной деформируемостью в холодном состоянии, что является важнейшим фактором при изготовлении крепежных изделий методом холодной деформации. Кроме того, такие стали практически не склонны к трещинообразованию, обладают высоким сопротивлением напряжению изгиба, малой склонностью к растрескиванию при нагреве и резком охлаждении, низкой способностью к обезуглероживанию.

К приоритетным механическим характеристикам проката относятся временное сопротивление разрыву и сужение поперечного сечения при испытании на растяжение, отражающие возможность упрочнения при калибровке. Жестко нормируется диаметр, овальность и осадка проката.

Большое влияние на деформируемостъ проката оказывает структура металла. Она должна быть однородная, поэтому не допускается разнозернистость,

выделение цементита и феррита по границам зерен, наличие мартенситных структур. Регламентируется доля зернистого перлита и величина обезуглероженного слоя на поверхности проката. Для холодной высадки необходимо иметь микроструктуру исходного металла после отжига 80-100% зернистого перлита. Ликвационная зона не должна превышать 25% сечения металла и не должна выходить на поверхностный слой. При этом, металлопрокат должен обладать технологичностью при переработке, например, легко удаляемой окалиной с минимальной массой, отсутствием поверхностных дефектов и др.

К технологическим свойствам металла под высадку относится его способность не разрушаться (отсутствие появления трещин и надрывов поверхности) при осадке плоской поверхностью деформирующего инструмента. При этом усилие осадки и скорость деформирования должны быть по возможности постоянными. Такими испытаниями определяют деформируемость металла и выявляют наличие поверхностных и внутренних дефектов.

Недостатком испытания на осадку является то, что полученные результаты будут не полностью характеризовать всю партию и даже отдельный бунт контролируемого металла. Это объясняется невозможностью контроля всей партии металла и неравномерностью распределения дефектов по всей длине бунта при установленных стандартами нормах отбора образцов.

К поверхностным дефектам горячекатаного и калиброванного проката относятся раскатные газовые пузыри, волосовые трещины, рванины и закаты. Основными причинами их возникновения являются дефекты металлургического производства. Неизменным дефектом поверхности металлопроката является образование обезуглероженного слоя вследствие выгорания части углерода при нагреве металла, как на стадии прокатки, так и при термической обработке перед калибровкой. Обезуглероживание и окалинообразование существенно снижают механические свойства в поверхностных слоях металлопроката. Поверхность становится восприимчивой к образованию рисок, задиров, царапин при прокатке, калибровке и холодной высадке.

Нами проведены исследования по выявлению поверхностных дефектов заготовок для дальнейшего переката из сталей марок 10кп, 30, 35X и 38XA на качество поверхности готового горячекатаного проката. Проведен статистический анализ результатов контроля качества заготовок для переката и горячекатаного проката, полученного после проката этих заготовок.

Заготовка для переката поставляется по ТУ 14-1-4492 с категорией поверхности 2(П) размером 125 мм х 25 мм х 420 мм. Контроль качества поверхности и макроструктуры заготовок, перечисленных марок сталей, проводился на темплетах (поперечных макрошлифах), протравленных при температуре 60-70 °С в 50% -ном водном растворе соляной кислоты. На всех исходных металлургических заготовках (темплетах) обнаружены раскатанные газовые пузыри глубиной от 0,5 мм до 2,0 мм, макроструктура плотная, однородная.