моделей, позволяющих поэтапно решать сложные задачи, переходя от простой их постановки к более сложной.

Авторами на основе системного подхода проводятся комплексные исследования, предназначенные для решения целого ряда важных технических задач, таких, как:

 – расчет и оценка несущей способности неоднородных многослойных оболочечных конструкций, применяемых в энергетическом и химическом машиностроении, работающих в условиях сложного термосилового нагружения, вызывающего развитие необратимых деформаций, повреждаемости материалов вследствие ползучести и воздействия агрессивных сред;

 проектирование оптимальных с точки зрения прочностной надежности, долговечности и материалоемкости конструкций применительно к конкретным технологическим процесссам;

 – оценка остаточного ресурса широкого класса высоконапряженных и опасных с точки зрения последствий разрушения конструкций (корпуса химических реакторов, детали газовых турбин и энергетических установок, компенсаторы тепловых деформаций и другие изделия тяжелого машиностроения), находящихся в настоящее время в эксплуатации.

В представленной работе предлагается концепция системного подхода к разработке методики исследования и моделирования термовязкоупругопластического напряженно – термовязкоупругопластическое без учета повреждаемости материалов при ползучести;

 термовязкоупругопластическое с учетом повреждаемости материалов при ползучести;

 термовязкоупругопластическое с учетом повреждаемости материалов при ползучести и водородной коррозии;

 термовязкоупругопластическое с учетом повреждаемости материалов при ползучести и водородной коррозии с исследованием кинетики развития областей повреждаемости.

Метод построения описывающих уравнений многопараметрических объектов уравнений Зиганшин Г.З.

Казанский государственный энергетический университет

Рассматриваются процедуры получения уравнения потенциальных изме-нений параметров процессов из балансного уравнения и построения на его основе дифференциального уравнения, описывающего динамику процесса, начиная с момента начала изменения воздействующих деформированного состояния неоднородных многослойных оболочечных конструкций с учетом повреждаемости материалов при ползучести и водородной коррозии.

При ЭТОМ модели, определяющие конструкций, объединенные поведение в комплекс, строятся с учетом современного состояния теоретических исследований И экспериментальных данных по полноте и достоверности описания рассматриваемых физико - механических процессов. При необходимости модели усложняются за счет их обобщения. Для этого используется иерархический подход к формированию системы моделей, реализующий принцип «от простого – к сложному», когда следующий уровень сложности достигается после достаточно подробного изучения более простой модели. В результате выстраивается многоуровневая архитектура все более сложных моделей. каждая ИЗ которых обобщает предыдущие, включая их в качестве частного случая.

Таким образом, авторами разработана методика исследования и моделирования поведения многослойных оболочечных конструкций, позволяющая описывать следующие виды его напряженно

- деформированного состояния:
- термоупругое;

 термоупругопластическое, с учетом и без учета водородной коррозии;

При построении данной методики использовались: соотношения теории неизотермических процессов упругопласти-ческого деформирования элементов твердого тела по траекториям малой кривизны, линеаризованные методом дополнительных деформаций; кинетические уравнения повреждаемости материалов при ползучести и водородной коррозии.

С применением разработанной методики решен ряд прикладных задач по расчету напряженно – деформированного состояния одно – и многослойных оболочек вращения при различных условиях нагружения.

параметров, кончая в момент прекращения изменения и установления постоянного значения регулируемой переменной.

Формализация физических и различных технологических процессов очень часто сводится к построению дифференциальных уравнений, описывающих изменение какого-либо, например, выходного параметра (параметров) процесса при изменении других (воздействующих на него) параметров. При этом первичные уравнения подвергаются таким значительным преобразованиям с целью приведения их к линейным и обыкновенным, что полученные дифференциальные уравнения не удовлетворяют требованиям, предъявляемым к описывающим функциям управляемых объектов. Они описывают изменение выходного параметра в интервале времени только от момента окончания изменения и установления постоянных значений воздействующих (возмущающих и управляющих) параметров до момента достижения постоянного значения управляемого (зависимого) параметра. В них переменными являются отношения малых изменений параметров объекта к их принимаемым постоянным и начальным значениям, отсутствуют функции чувствиительности управляемого параметра по воздействующим И скорости изменения воздействующих параметров. Такой подход возможен и рационален в тех случаях, когда $\tau_2 >>$ τ_1 где $\tau_2 = t_2 - t_0$, $\tau_1 = t_1 - t_0$, t_0 , t_1 – моменты начала окончания изменений воздействующих И параметров; t_0 , t_2 – моменты начала и окончания изменения управляемого параметра соответственно. Однако реальные технологические

процессы в промышленном производстве характеризуются непрерывным изменением воздействующих параметров и состояния. Как динамические они представляют собой бесконечную последовательность переходных процессов, при которых нет постоянных начальных значений. Каждое предыдущее значение параметров и состояния является начальным для последующего их изменения. При этом продолжительности исходных процессов соизмеримы ($\tau_2 \rightarrow \tau_1$), управляемый параметр следует рассматривать как сложную функцию от функций, зависящих от одного независимого аргумента – времени.

В данной работе на примере процесса идеального смешения в аппарате, приведенном на рис.1, приводятся процедуры получения уравнения динамического баланса, описывающего изменение управляемого параметра при изменении воздействующих параметров

Для непрерывного процесса смешения двух потоков *и* и $f [6^{-1} \cdot 10^{-4} \text{ м}^3/\text{сек}]$ с плотностями ρ и v $[10^6 \text{ г/m}^3]$ одного и того же вещества уравнение баланса записывается: для $t = t_0$ в виде

$$u_{j0} - r_{x0} + f_{i0} \cdot n_{h0} = (u_{j0} + f_{i0}) x_{k0},$$

(1)

для $t = t_2$, где t_2 – момент установления равновесия в системе после изменения воздействующих параметров, –

$$(u_{j0}+u_{0\beta})(\rho_{x0}+\rho_{0b}) + (f_{i0}+f_{0\alpha})(\gamma_{\eta 0}+\gamma_{0s}) = = [(u_{j0}+u_{0\beta}) + (f_{i0}+f_{0\alpha})](x_{k0}+x_{0\gamma}),$$
(2)

где u_{j0} , ρ_{x0} , f_{i0} , $\gamma_{\eta0}$, x_{k0} , *j*-ое, *i*-ое, *k*-ое и *x*-ое начальные значения переменных; $u_{0\beta}$, ρ_{0p} , $f_{0\alpha}$, v_{0s} , $x_{0y} - \beta$ -ое, *p*-ое, *a*-ое, *s*-ое, *y*-ое изменения переменных. Подставляя (1) в (2), получим для $t \rightarrow t_2$

$$\lim_{t \to t_2} x_{0\gamma} = \frac{u_{0b} \left(\rho_{\xi 0} + \rho_{0p} - x_{k0} \right) + f_{i0} v_{0s} + f_{0\alpha} \left(x_{k0} - v_{\eta 0} - v_{0s} \right)}{u_{0\beta} - (f_{i0} + f_{0\alpha})} - \frac{f_{i0} \rho_{0p} \left(x_{k0} - v_{\eta 0} \right)}{\left(\rho_{\xi 0} - x_{k0} \right) \left(u_{0\beta} - f_{i0} - f_{0\alpha} \right)} = \Delta_{0\gamma} F.$$
⁽³⁾

Левая часть выражения (3) отражает потенциальное изменение управляемого параметра при мгновенном или опережающем изменении воздействующих параметров. Его можно назвать уравнением потенциального изменения, то есть уравнение (1) написано для $t \le t_0$, а уравнение (2) – для $t \le t_2$. На основании уравнения (3) и учитывая, что $x_{0g}(t) = x_{0g}[u_{0b}(t), f_{0a}(t), r_{0p}(t), n_{0s}(t), t]$ для $t_0 < t < t_2$ можно записать

$$a\frac{\partial x_{0\gamma}}{\partial u_{0\beta}}\frac{du_{0\beta}}{dt} + b\frac{\partial x_{0\gamma}}{\partial \rho_{0p}}\frac{df_{0\alpha}}{dt} + c\frac{\partial x_{0\gamma}}{\partial f_{0\alpha}}\frac{df_{0\alpha}}{dt} + e\frac{\partial x_{0\gamma}}{\partial v_{0s}}\frac{dv_{0s}}{dt} + l\frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = \Delta_{0\gamma}F$$
(4)

Уравнение (4) отражает динамический баланс обобщенных сил воздействия и сопротивления, изменяющихся от начальных до новых установившихся значений. В тот момент, когда при $t = t_1$. изменение воздействующих параметров заканчивается, они принимают постоянные значения,

$$\frac{du_{0\beta}}{dt} = \frac{d\rho_{0p}}{dt} = \frac{df_{0\alpha}}{dt} = \frac{dv_{0s}}{dt} = 0$$

и из (4) для $t \ge t_1$, получаем x

$$l\frac{dx_{0\gamma}}{dt} + x_{0\gamma} = \Delta_{0\gamma}F_{.(5)}$$

Для случаев постоянства концентраций в потоках $r_{xy} = r_{x0}$, $n_{hs} = n_{h0}$ (4) и (5) можно записать в $\partial r_{0} = \partial r_{0}$, $\partial r_{0} = \partial r_{0}$,

$$a \frac{\partial x_{0\gamma}}{\partial u_{0\beta}} \frac{\partial u_{0\beta}}{\partial t} + c \frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} \frac{df_{0\alpha}}{dt} + l \frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} =$$

$$= \frac{u_{0\beta} \left(\rho_{\xi 0} - x_{k0}\right) - f_{0\alpha} \left(x_{k0} - v_{\eta 0}\right)}{u_{0\beta} - (f_{i0} + f_{0\alpha})}, \qquad (6)$$

$$l\frac{dx_{0\nu}}{dt} + x_{0\gamma} = \frac{u_{0\beta}(\rho_{\xi 0} - x_{k0}) - f_{0\alpha}(x_{k0} - \nu_{\eta 0})}{u_{0\beta} - (f_{i0} + f_{0\alpha})}$$
(7)

В общем случае в (7)

$$x_{0g} = x_{0g} [u_{0b}(t), f_{0a}(t), \mathbf{r}_{0p}(t), \mathbf{n}_{0s}(t), t].$$
(8)

Дифференцируя (8), получим

ФУНДАМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ №12, 2006

$$\frac{dx_{0\gamma}\left[u_{0\beta}(t), f_{0\alpha}(t), \rho_{0p}(t), v_{0s}(t)\right]}{dt} = a\frac{\partial x_{0\gamma}}{\partial u_{0\beta}}\frac{du_{0\beta}}{dt} + b\frac{\partial x_{0\gamma}}{\partial \rho_{0p}}\frac{d\rho_{0p}}{dt} + c\frac{\partial x_{0\gamma}}{\partial f_{0\alpha}}\frac{df_{0\alpha}}{dt} + e\frac{\partial x_{0\gamma}}{\partial v_{0s}}\frac{dv_{0s}}{dt} + l\frac{\partial x_{0\gamma}}{\partial t}.$$
(9)

Подставляя (9) в левую часть (7), получаем уравнение (4). Это означает, что обыкновенные дифференциальные уравнения (5) и (7) являются частными случаями дифферен-циального уравнения (4), представляющего обобщенное уравнение для описания динамики многих физических и технологических процессов в промежутке времени от момента начала изменения воздействующих параметров до момента установления постоянного значения управляемого параметра. Уравнения (4) и (6) удовлетворяют и условиям непрерывности изменения воздействующих и управляемых параметров.

Как видно, уравнение (4) получается путем замены левой части уравнения (3)

$$\lim_{t \to t_2} x_{0\gamma} = \lim_{b \to t_2} x_{0\gamma} = \lim_{b \to t_2} \frac{du_{0\beta}}{dt} + b \frac{\partial x_{0\gamma}}{\partial \rho_{0p}} \frac{d\rho_{0p}}{dt} + c \frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} \frac{df_{0\alpha}}{dt} + e \frac{\partial x_{0\gamma}}{\partial v_{0s}} \frac{dv_{0s}}{dt} + l \frac{\partial x_{0\gamma}}{\partial t} = \lim_{t \to t_2} x_{0\gamma}$$

Приведенный метод достаточно закономерен, поскольку уравнение статики описывает равновесие в объекте до и после переходного процесса и полностью подтверждается положением в теоретической механике, что «Введя при решении задач динамики силу инерции, мы согласно принципу Даламбера получаем уравновешенную систему сил, а потому можем воспользоваться уравнением статики» [1]. Величиной, эквивалентной обобщенной силе инерции, в уравнении (4) является выражение

$$\lim_{t \to t_2} x_{0\gamma} \left[a \frac{\partial x_{0\gamma}}{\partial u_{0\beta}} \frac{d u_{0\beta}}{d t} + b \frac{\partial x_{0\gamma}}{\partial \rho_{0p}} \frac{d \rho_{0p}}{d t} + c \frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} \frac{d f_{0\alpha}}{d t} + e \frac{\partial x_{0\gamma}}{\partial v_{0s}} \frac{d v_{0s}}{d t} + l \frac{\partial x_{0\gamma}}{\partial t} \right] = 0$$

Уравнение (4) имеет принципиальное отличие. Для его решения требуется для каждого изменения каждого воздействующего параметра

вычислять значения функций чувствительности выходного параметра по воздействующим. Для (4) они определяются из выражения (3):

$$\frac{\partial x_{0\gamma}}{\partial u_{0\beta}} = \frac{\left(u_{0\beta} - f_{i0} - f_{0\alpha}\right)\left(\rho_{\xi 0} - x_{k0}\right) - u_{0\beta}\left(\rho_{\xi 0} - x_{k0}\right) - f_{0\alpha}\left(x_{k0} - v_{\eta 0}\right)}{\left(u_{0\beta} - f_{i0} + f_{0\alpha}\right)^2}$$
(10)

$$\frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} = \frac{(u_{0\beta} - f_{i0} - f_{0\alpha})(x_{k0} - v_{\eta 0}) - u_{0\beta}(\rho_{\xi 0} - x_{k0}) - f_{0\alpha}(x_{k0} - v_{\eta 0})}{(u_{0\beta} - f_{i0} + f_{0\alpha})^2}$$
(11)

Существование и единственность решения уравнения (4)определяется его решением при известных значениях функций чувствительности. Для упрощения процедуры рассмотрим (6), отличающееся от (4) условиями $p_{\xi pp} = p_{\xi p}$, $n_{hs} = v_{\eta 0}$. Для этого обозначим правую часть (6)

$$\frac{u_{0\beta}(\rho_{\xi 0} - x_{k0}) - f_{0\alpha}(x_{k0} - v_{\eta 0})}{u_{0\beta} - (f_{i0} + f_{0\alpha})} = F_{0\gamma}, \quad \frac{\partial x_{0\gamma}}{\partial u_{0\beta}} = b_{0\beta}$$
$$\frac{x_{0\gamma}}{\partial f_{0\alpha}} = a_{0\alpha}.$$

Тогда из (6) получим

$$b_{0\beta} \frac{du_{0\beta}}{dt} - a_{0\alpha} \frac{df_{0\alpha}}{dt} + \frac{\partial x_{0\gamma}}{dt} + x_{0\gamma} = F_{0\gamma},$$

$$a_{\Pi \mu \mu} \frac{du_{0\beta}}{dt} = \frac{df_{0\alpha}}{dt} - \frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = F_{0\gamma} - (b_{0\beta} - a_{0\alpha}) \frac{du_{0\alpha}}{dt}.$$

$$(12)$$

$$O_{003Hayaax} j(t) = F_{0\gamma} - (b_{0\beta} - a_{0\alpha}) \frac{du_{0\beta}}{dt}, \quad \text{из уравнения}$$

$$(12)$$

$$\frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = f_{0\gamma} - (b_{0\beta} - a_{0\alpha}) \frac{du_{0\beta}}{dt}, \quad \text{из уравнения}$$

$$\frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = j(t), \ t = 0, \ x = x_{k0}.$$

Согласно [2] решение этого уравнения записывается в виде

$$x_{0\gamma} = e^{-F} \left(x_{k0} + \int_{0}^{t} j(t) e^{F} dt \right)$$

где $F = \int_{0}^{t} 1 dt = t$ и окончательно при $x_{k0} = 0$

$$x_{0\gamma} = e^{-t} \int_{0}^{t} j(t) e^{t} dt,$$

Принимая для примера $u = (1 - e^{-0.8t}), \frac{du}{dt} = 0.8e^{-0.8t},$ $j(t) = F_{0\gamma} - (b_{0\beta} - a_{0\alpha})0.8e^{-0.8t},$

$$x_{0\gamma} = e^{-t} \int_{0}^{t} \left(F_{0\gamma} - \left(b_{0\beta} - a_{0\alpha} \right) 0, 8e^{t} \right) dt =$$

= $F_{0\gamma} e^{-t} \left(e^{t} - 1 \right) + 4 \left(b_{0\beta} - a_{0\alpha} \right) e^{-t} \left(e^{0,2t} - 1 \right)$

Подставляя данные таблицы 5, где для одного случая g = 1 $F_{0g} = 0,0477$, $b_{0b} = 0,4$, $a_{0a} = 0,27$, получаем $x_{0g} = 0,0477$ $(1 - e^{-t}) - 0,52$ e^{t} $(e^{0,2t} - 1)$.

Определяя значения x_{01} при g = 2 в области $t \in [0;15]$, получим график 1 изменения x_{01} во времени (рис.1). График 2 характеризует изменение u(t). Отрицательная часть графика 1

обусловлена не процессом в системе, а только свойством аппроксимирующего решения, как например, полином, являясь универсальным средством приближения графиков, не может охватить абсолютно всю область значений функций

Для случая
$$u = -(1 - e^{-0.8t})$$
, $\frac{du}{dt} = -0.8e^{-0.8t}$ получим

$$\mathbf{j}(t) = F_{0g} + (b_{0b} - a_{0a}) \ 0.8e^{-0.8t}$$

и решение для g = 2

$$x_{02} = -0.0477(1 - e^{t}) + 0.52e^{-t} (e^{0.2t} - 1).$$

Графики 3 для u = -u(t) и 4 для $x_{02} = x_{02}(-u(t))$ приведены на том же рис.1, представляют собой зеркальное отображение графиков 1, 2. Результаты этих исследований подтверждают, что уравнение типа (4) реально существует.

Уравнение (1) применимо для описания баланса в одной любой зоне многозонного аппарата удаления технологической жидкости :

путем ступенчатого смешения (вымывания) ее при орошении твердых веществ менее концентрированной жидкостью. Статический баланс в четырехзонном аппарате, в котором потоки твердых веществ и орошающей жидкости двигаются навстречу (рис.2), для $t = t_0$, описываются системой уравнений

$$\begin{split} u_{1\,j0}\rho_{1\xi0} + f_{1i0}v_{1\eta0} &= \left(u_{1\,j0} + f_{1i0}\right)x_{1k0}, \\ u_{2\,j0}\rho_{2\xi0} + f_{2i0}v_{2\eta0} &= \left(u_{2\,j0} + f_{2i0}\right)x_{2k0}, \end{split}$$

(13)

$$u_{3j0}\rho_{3\xi0} + f_{3i0}v_{3\eta0} = (u_{3j0} + f_{3i0})x_{3k0},$$

$$u_{4j0}\rho_{4\xi0} + f_{4i0}v_{4\eta0} = (u_{4j0} + f_{4i0})x_{4k0},$$

а для $t_0 < t < t_2$ – системой уравнений

$$\begin{aligned} & \left(u_{1\,j0} + u_{10\,\beta} \right) \left(\rho_{1\zeta0} + \rho_{10\,p} \right) + \left(f_{1i0} + f_{10\alpha} \right) \left(v_{1\eta0} + v_{10s} \right) = \\ & = \left[\left(u_{1\,j0} + u_{10\,\beta} \right) + \left(f_{1i0} + f_{10\alpha} \right) \right] \left(x_{1k0} + x_{10\gamma} \right), \end{aligned}$$

$$\begin{aligned} \left(u_{2\,j0} + u_{20\,\beta}\right) \left(\rho_{2\xi0} + \rho_{20\,p}\right) + \left(f_{2i0} + f_{20\alpha}\right) \left(v_{2\eta0} + v_{20s}\right) = \\ &= \left[\left(u_{2\,j0} + u_{20\beta}\right) + \left(f_{2i0} + f_{20\alpha}\right)\right] \left(x_{2k0} + x_{20\gamma}\right), \end{aligned}$$
(14)
$$\left(u_{3\,j0} + u_{30\beta}\right) \left(\rho_{3\xi0} + \rho_{30p}\right) + \left(f_{3i0} + f_{30\alpha}\right) \left(v_{3\eta0} + v_{30s}\right) = \\ &= \left[\left(u_{3\,j0} + u_{30\beta}\right) + \left(f_{3i0} + f_{30\alpha}\right)\right] \left(x_{3k0} + x_{30\gamma}\right), \end{aligned}$$
$$\left(u_{4\,j0} + u_{40\beta}\right) \left(\rho_{4\xi0} + \rho_{40p}\right) + \left(f_{4i0} + f_{40\alpha}\right) \left(v_{4\eta0} + v_{40s}\right) = \\ &= \left[\left(u_{4\,j0} + u_{40\beta}\right) + \left(f_{4i0} + f_{40\alpha}\right)\right] \left(x_{4k0} + x_{40\gamma}\right). \end{aligned}$$

Вычитая решение системы (13) относительно начального значения плотности на выходе любой зоны x_{dk0} из решения (14) относительно значений плотности x_{dkg} на выходе той же зоны после установления равновесия в аппарате получим $x_{dkg} - x_{dk0} = x_{dk0}$, где δ – номер

зоны аппарата. Тогда для плотности 4-ой зоны при возможных изменениях подачи воды в 4-ую зону, поступления сорбированной смеси в 1-ую зону и плотностей поступающих в 4-ую зону орошающей и сорбированной смесей имеем

$$a\frac{\partial x_{40\gamma}}{\partial u_{40\beta}}\frac{du_{40\beta}}{dt} + b\frac{\partial x_{40\gamma}}{\partial \rho_{40p}}\frac{d\rho_{40p}}{dt} + c\frac{\partial x_{40\gamma}}{\partial f_{10\alpha}}\frac{df_{10\alpha}}{dt} + e\frac{\partial x_{40\gamma}}{\partial v_{10s}}\frac{dv_{10s}}{dt} + l\frac{\partial x_{40\gamma}}{\partial t} + x_{40\gamma} = F_{40\gamma}\left(u_{40\beta}, f_{10\alpha}, \rho_{40p}, v_{10s}\right),$$
⁽¹⁵⁾

где r_{40p} – изменение независимого параметра орошающего потока; u_{40b} – изменение орошающего потока с целью управления процессом; f_{10a} , n_{10s} – изменения параметров независимого потока, являющегося нагрузкой на аппарат. Здесь приняты изменения f_{10a} и n_{10s} с индексами первой зоны, относящимися к первой зоне потому, что именно они определяют плотности на выходе всех зон. Точно также в уравнение первой зоны должны войти изменения u_{40b} , r_{40p} параметров потока четвертой зоны. Для любой зоны уравнение (15) записывается, опуская номера зон при u_{40b} , f_{10a} , n_{10s} , r_{40p} , в виде

Рис. 2. Схема технологических потоков.

ФУНДАМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ №12, 2006

$$a\frac{\partial x_{\delta 0\gamma}}{\partial u_{0\beta}}\frac{du_{0\beta}}{dt} + b\frac{\partial x_{\delta 0\gamma}}{\partial \rho_{0p}}\frac{d\rho_{0p}}{dt} + c\frac{\partial x_{\delta 0\gamma}}{\partial f_{0\alpha}}\frac{df_{0\alpha}}{dt} + e\frac{\partial x_{\delta 0\gamma}}{\partial v_{0s}}\frac{dv_{0s}}{dt} + l\frac{\partial x_{\delta 0\gamma}}{\partial t} + x_{\delta 0\gamma} = F_{40\gamma}\left(u_{0\beta}, \rho_{0p}, f_{0a}, v_{0s}, t\right).$$
⁽¹⁶⁾

Рассмотрим (16) для сокращения процедур вычисления при $r_{xp} = r_{x0} = 1$, $n_{hs} = n_{h0} = 1,8$ и получим

$$a\frac{\partial x_{\delta 0\gamma}}{\partial u_{0\beta}}\frac{du_{0\beta}}{dt} + c\frac{\partial x_{\delta 0\gamma}}{\partial f_{0\alpha}}\frac{df_{0\alpha}}{dt} + l\frac{\partial x_{\delta 0\gamma}}{\partial t} + x_{\delta 0\gamma} = F_{\delta 0\gamma}\left(u_{0\beta}, f_{0\alpha}, t\right)_{,(17)}$$

где

$$F_{\delta 0\gamma} = F_{\delta 0\gamma} \begin{cases} x_{4k\gamma} (u_{j\beta} + f_{i\alpha}) - x_{3k\gamma} f_{i\alpha} = u_{j\beta}, \\ x_{3k\gamma} (u_{j\beta} + f_{i\alpha}) - x_{4k\gamma} u_{i\beta} - x_{2k\gamma} f_{i\alpha} = 0, \\ x_{2k\gamma} (u_{j\beta} + f_{i\alpha}) - x_{3k\gamma} u_{i\beta} - x_{1k\gamma} f_{i\alpha} = 0, \\ x_{1k\gamma} (u_{j\beta} + f_{i\alpha}) - x_{2k\gamma} u_{i\beta} = 1, 8f_{i\alpha}. \end{cases}$$

(18)

Форма записи (17) обусловлена необходимостью указать на определяемость значения функции F_{dyg} из системы (18) и невозможностью явного выражения ее из системы (18). Значение функции F_{dyg} из (18) определяется только путем вычисления.

Для проверки существования решения уравнения (17) (множества решений для каждого $\gamma = 1, ..., \tau$) необходимо решить две задачи: определение значений F_{dyg} и определение значений функций чувствительности

$$\frac{\partial x_{\delta 0\gamma}}{\partial u_{0\beta}}, \frac{\partial x_{\delta 0\gamma}}{\partial f_{0\alpha}}$$

Определим значения $\partial x_{\partial 0\gamma} / \partial f_{0\alpha}$. Поскольку значения плотностей смесей на выходе всех зон при различных значениях подачи воды и расхода :

смеси в 1-ую зону определяются из системы четырех уравнений (14), то решение задачи сводится к дифференцированию этой системы

$$\frac{\partial}{\partial u_{0\beta}}\begin{cases} x_{4k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{3k\gamma} f_{i\alpha} = u_{j\beta}, \\ x_{3k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{4k\gamma} u_{j\beta} - x_{2k\gamma} f_{i\alpha} = 0, \\ x_{2k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{3k\gamma} u_{j\beta} - x_{1k\gamma} f_{i\alpha} = 0, \\ x_{1k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{2k\gamma} u_{j\beta} = 1, 8f_{i\alpha}, \end{cases}$$

(19)

$$\frac{\partial}{\partial f_{0a}}\begin{cases} x_{4k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{3k\gamma} f_{i\alpha} = u_{j\beta}, \\ x_{3k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{4k\gamma} u_{j\beta} - x_{2k\gamma} f_{i\alpha} = 0, \\ x_{2k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{3k\gamma} u_{j\beta} - x_{1k\gamma} f_{i\alpha} = 0, \\ x_{1k\gamma} \left(u_{j\beta} + f_{i\alpha} \right) - x_{2k\gamma} u_{j\beta} = 1, 8 f_{i\alpha}, \end{cases}$$

$$(20)$$

Решение задач (19) и (20) встречает значительные трудности, нужны другие методы. Для решения задачи проведена следующая работа. По уравнению (14) вычислены равновесные

значения плотностей по зонам для трех значений подачи воды u_{ib} и трех значений расхода смеси f_{ia} .

Результаты вычислений приведены в таблице 1. Для наглядности по табл. 1 построены 6 графиков (рис. 3). Данные таблицы аппроксимированы уравнениями, приведенными в табл. 2.. Дифференцируя по воздействующим параметрам уравнения табл. 2, получим дифференциальные уравнения в частных производных (табл. 3), представляющих собой функции чувствительности. При всех вычислениях значения расходов уменьшены в

.

100 раз для повышения точности вычислений. В таблицах приведены уменьшенные их значения.

Далее, продолжая подготовку данных к проверке уравнения (17), необходимо получить значения $\partial x_d / \partial u_4$, $\partial x_d / \partial f_1$. Для этого решаются уравнения, приведенные в табл. 3, подставляя в них значения u_4 и f_1 . Во избежание громоздких вычислений выполним их только для плотности x_4 , т.е. для первых шести уравнений табл. 3. Результаты вычислений приведены в табл. 4

Таблица 1.3 начения плотности x_4 при различных значениях u_4, f_1

№№ кривых	1	2	3	№№ кривых	4	5	6
u_4	$f_1 = 1,08$	$f_1 = 0,90$	$f_1 = 0,72$	f_1	$u_4 = 1,08$	$u_4 = 0,90$	$u_4 = 0,72$
1,08	1,16	1,1075	1,0606	1,08	1,16	1,2229	1,3071
1,02	1,1786	1,1226	1,0708	1,02	1,1422	1,2023	1,2853
0,96	1,1977	1,14	1,0870	0,96	1,1247	1,1813	1,2545
0,90	1,2229	1,16	1,0974	0,90	1,1075	1,16	1,238
0,84	1,2485	1,2828	1,1148	0,84	1,0909	1,1387	1,2127
0,78	1,2765	1,2087	1,1354	0,78	1,0752	1,1177	1,1866
0,72	1,3071	1,2380	1,16	0,72	1,0606	1,0975	1,16

Таблица 2 Уравнения плотностей при равновесных состояниях в круговом аппарате

№№ уравнений	Уравнения
1	$x_4 = 1,8727 - 1,036 u_4 + 0,3482 u_4^2 ,$
2	$x_4 = 1,804 - 1,07 \ u_4 + 0,3938 \ u_4^2 \ ,$
3	$x_4 = 1,6648 - 0,988 u_4 + 0,3968 u_4^2$,
4	$x_4 = 0,928 + 0,1214 f_1 + 0,0866 f_1^2$
5	$x_4 = 0,8503 + 0,338 f_1 + 0,0066 f_1^2$
6	$x_4 = 0,7813 + 0,605 f_1 - 0,1095 f_1^2$

МАТЕРИАЛЫ КОНФЕРЕНЦИЙ

№№ уравнений	Уравнения
1	$\partial x_4 / \partial u_4 = 0,69634 u_4 - 1,036$
2	$\partial x_4 / \partial u_4 = 0,7876 \ u_4 - 1,07$
3	$\partial x_4 / \partial u_4 = 0,7936 \ u_4 - 0,988$
4	$\partial x_4 / \partial f_1 = 0,17326 f_1 + 0,1214$
5	$\partial x_4 / \partial f_1 = 0.0134 f_1 + 0.338$
6	$\partial x_4 / \partial f_1 = 0,219 f_1 + 0,605$

Таблица 3. Дифференциальные уравнения по воздействующим параметрам

Рис. 3. Графики зависимости x_4 от подачи воды (1-3)и расхода смеси (4-6)

Для определения значений F_{0g} необходимо решить систему (14) при одновременном изменении расхода смеси f_1 и подачи воды u_4 . Эти данные можно получить из табл. 2 следующим образом. Первые строки данных для кривых 1, 4 в

табл. 2 приняты за начальные значения. Полагая изменения u_{0b} и f_{0a} на 0,06, соответствующее изменение $x_{40\gamma}$ получим вычитанием первой строки из второй [$x_{40\gamma}$ (1,08) – $x_{40\gamma}$ (1,02)].

Таблица 4. Значения ф	ункций чувствительности <i>х</i> .	₄₀₇ по <i>и</i>	_{40b} и f _{10a} .
-----------------------	------------------------------------	----------------------------	-------------------------------------

№№ уравнение	1	2	3	№№ уравнений	4	5	6
u_4	f ₁ =1,08	<i>f</i> ₁ =0,90	<i>f</i> ₁ =0,72	f_1	<i>u</i> ₄ =1,08	<i>u</i> ₄ =0,90	<i>u</i> ₄ =0,72
1,08	-0,28	-0,22	-0,1309	1,08	0,3084	0,3522	0,3685
1,02	-0,326	-0,2666	-0,1785	1,02	0,2980	0,3514	0,3816
0,96	-0,3678	-0,3139	-0,2261	0,96	0,2876	0,3505	0,3947
0,90	-0,41	-0,3611	-0,2737	0,90	0,2773	0,3499	0,4079

0,84	-0,451	-0,4085	-0,3214	0,84	0,2669	0,3491	0,4200
0,78	-0,4931	-0,4556	-0,369	0,78	0,2565	0,3483	0,4342
0,72	-0,535	-0,5029	-0,4166	0,72	0,2461	0,3475	0,4473

Далее, вычитанием первой строки из третьей при существующем изменении и_{40b} и f_{10a} на 0,06 и т.д. Результаты внесены в графы 3, 4, 6, табл. 5. Значение F_{0g} получается 7 алгебраическим суммированием данных граф 4 и 7. Для кривых 2 и 5 (рис.3) за начальные значения f_{i0} , u_{i0} приняты строки при $x_4 = 1,16$ (как в первом случае). Шаги изменения сделаны вверх и вниз от этой строки. Результаты вычислений тоже внесены в графы 4, 7. Значения F_{0g} получаются также суммированием.

2 и 5, 3 и 6. Итак, берем кривые I и 4. Уравнение (17)принимает

Для кривых 3, 6 за начальные значения приняты (при $u_{i0} = 0,72$) данные последних строк тоже при x₄ = 1,16. Шаги изменения сделаны снизу вверх. Остальные приемы аналогичны. Остается указать, как пользоваться данными таблицы 5 для проверки уравнения (17). Для выяснения роли функций чувствительности в уравнении (17) необходимо взять данные кривых, исходящих из одной точки 1,16, сходящихся к ней или пересекающихся в той точке. Это кривые 1и4.

_{вид} 0,3084
$$\frac{du_0\beta}{at}$$
 + 0,2843 $\frac{df_{0\alpha}}{at}$ + $\frac{\partial x_{40\gamma}}{\partial t}$ + $x_{40\gamma}$ = 0,001 (21)

Габлица 5. Изменение F_{0g} при одновременном изменении u_{0b} и $f_{0\alpha}$, $x_{4k0} = 1,16$								
N⁰	f_{i0}			N⁰				
кри-	u_{i0}	u_{0b}	x_{40g}	кри-	f_{0a}	<i>x</i> _{40g}		
DIIV			_	DIIV		-		

№ кри- вых	f_{i0} u_{i0}	u_{0b}	χ_{40g}	№ кри- вых	f_{0a}	χ_{40g}	F_{0g}
1	2	3	4	5	6	7	8
		0,06	0,0188		-0,06	-0,0178	0,0010
	1,08	0,12	0,0377		0,12	-0,0353	0,0024
1	1,08	0,18	0,0629	4	0,18	-0,0525	0,0104
1		0,24	0,0885	4 -	0,24	-0,0691	0,0194
		0,30	0,1165		0,30	-0,0848	0,0317
		0,36	0,1471		0,36	-0,0994	0,0477
		0,18	-0,0525	5	0,18	0,629	0,0104
	0,90	0,12	-0,0374		0,12	0,0423	0,0049
2	0,90	0,06	-0,02		0,06	0,0213	0,0013
2		-0,06	0,0228		-0,06	-0,0213	0,0015
		-0,12	0,0487		-0,12	-0,0423	0,0064
		-0,18	0,0780		-0,18	-0,0625	-0,0155
		0,26	-0,0994		0,36	0,1471	0,0477
	0,72	0,30	-0,0892		0,30	0,1253	0,0361
	0,72	0,24	-0,0770	ć	0,24	0,0995	0,0225
3		0,18	-0,0626	0	0,18	0,0780	0,0154
		0,12	-0,0452		0,12	0,0527	0,0075
		0,06	-0,0246		0,06	0,0266	0,0020

Из уравнения (21) следует, что при равенстве скоростей изменения $u_{0\beta}, f_{0\alpha}$

$$\frac{du_{0\beta}}{dt} = \frac{df_{0\alpha}}{dt}$$

условие равенства нулю левой части уравнения не выполняется, хотя по графикам оно должно быть выполнено. Дело в том, что значения $\partial x_{40g} / \partial u_{0b}$, $\partial x_{40g} / \partial f_{0a}$, взятые в табл. 1, относятся только к точке $u_{0b} = 1,08$, $f_{0a} = 1,08$, а изменение x_{40g} – к концу интервала от 1,08 до 1,02. Если посмотреть значения функций чувствительности, то можно увидеть, что они увеличиваются по линейному закону, как и следовало ожидать по их уравнениям в табл. З. В то же время по графикам, например 4 и 6, они должны быть постоянными. Здесь, по-видимому, проявляется вероятность получения бессмысленных результатов при дифференцированной экспериментальных данных [2]. Здесь это проявляется в том, что первичное уравнение недостаточно точно

описывает график, близкий к прямой линии, которое было взято для описания уравнения прямой линии, чтобы сохранить подобие другим уравнениям. Поэтому для проверки существования решения уравнения (17) возьмем данные из графиков. Из них следует, что $F_{0g}(u_{40b}, f_{10a})$ Крутизны графиков 1 и 4 можно считать равными и, как следствие, отношения x_{40g} к шагу изменения $u_{v0b} = 1,08 - 1,02 = 0,06, f_{10a} = 1,08 - 1,02 = 0,06$

$$\frac{\partial x_{40\gamma}}{\partial u_{40\beta}} = \left| \frac{\partial x_{40\gamma}}{\partial f_{10\alpha}} \right| = \frac{0.0133}{0.06} = 0.28.$$

Выражение (17) принимает вид (опуская номера зон в индексах):

$$0,28\left(\frac{du_{0\beta}}{dt} + \frac{df_{0\alpha}}{dt}\right) + \frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = 0,001.$$

Запишем его в виде

$$\frac{\partial x_{0\gamma}}{\partial t} + x_{0\gamma} = 0,001 - 0,28 \left(\frac{du_{0\beta}}{dt} - \frac{df_{0\alpha}}{dt} \right)$$

По справочнику [3] решение уравнения (17) записывается

$$x_{0\gamma} = e^{-t} \int_{0}^{t} j(t) \cdot e^{t} dt,$$

1

что приводит к выражению $x_{0g} = F_{0g} (f_1 - e^{-t})$, а для случая $du_{0b} / dt = df_{0a} / dt$ при $t \to \infty x_{0g} = 0,001$. Проверим в случае неравенства функций чувствительности для графиков 3 и 6:

1. Для изменения $df_{0a} = du_{0b} = 0,36, F_{0g} = 0,0477$

$$\frac{\partial x_{0\gamma}}{\partial u_{0\beta}} = \frac{0,1471}{0,36} = 0,4, \quad \frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} = \frac{0,0104}{0,36} = 0,27$$

решение пишется в виде $x_{0\gamma} = e^{-t} \int_{0}^{t} j(t) \cdot e^{t} dt,$

$$j = -0.0477 - \left(0.4 \frac{du_{0\beta}}{dt} - 0.27 \frac{df_{0\alpha}}{dt}\right)$$

где

Для $du_{0b}/dt = df_{0a}/dt$, $u_{0b} = 1 - e^{-0.8t}$

$$x_{0\gamma} = \left[-0.0477 \left(1 - e^{-t} \right) + 0.52 e^{-t} \left(e^{0.2t} - 1 \right) \right]_{t \to \infty} = 0.0477.$$

2. Для изменения
$$df_{0a} = du_{0b} = 0,30, F_{0g} = -0,0317$$

 $\frac{\partial x_{0\gamma}}{\partial u_{0\beta}} = \frac{0,1165}{0,30} = 0,388, \ \frac{\partial x_{0\gamma}}{\partial f_{0\alpha}} = \frac{0,0848}{0,30} = 0,282,$

$$j = -0.0317 - \left(0.388 \frac{du_{0\beta}}{dt} - 0.282 \frac{df_{0\alpha}}{dt}\right)$$

и т.д. Результаты представлены в таблице 6.

Из данных графы 8 таблицы 6 следует, что результаты вычислений значений плотности на выходе четвертой зоны аппарата совпадают с данными графиков на рис.3. Проверка осуществлена для 24-х графиков. Такая высокая точность обусловлена тем, что здесь приняты равными скорость изменения подачи воды на орошение и скорость изменения поступления смеси в массе. Естественно, на практике эти скорости отличаются и уравнение (17) принимает вид:

$$a\frac{\partial x_{d0\gamma}}{\partial t} + e\frac{\partial x_{d0\gamma}}{\partial u_{0\beta}}\frac{du_{0\beta}}{at} + c\frac{\partial x_{d0\gamma}}{\partial f_{0\alpha}}\frac{df_{0\alpha}}{at} + x_{d0\gamma} = F_{d0\gamma},$$

где *а*, *в*, *с* – коэффициенты, могущие быть в общем случае переменными или функциональными. В данном случае они приняты

равными единице для обоснования принципа построения дифференциальных уравнений

и _{0Ь}	$\frac{\partial x_{n0\gamma}}{\partial u_{0\beta}}$	f_{0a}	$\frac{\partial x_{n0\gamma}}{\partial f_{0a}}$	А=гр.2+ +гр.4	Af_{0a}	<i>F_{0g}</i> = гр.8 табл.5	δ = rp.6 r p.7
1	2	3	4	5	6	7	8
0,06	0,3133	0,06	-0,2967	0,0166	0,001	0,0010	0
0,12	0,3142	0,12	-0,2942	0,1200	0,0024	0,0024	0
0,18	-0,3494	0,18	-0,2917	0,0523	0,0094	0,0104	0,001
0,24	-0,3688	0,24	-0,2879	0,0809	0,0194	0,0194	0
0,30	-0,3883	0,30	-0,2827	0,1056	0,0317	0,0317	0
0,36	0,4036	0,36	-0,2761	0,1325	0,0477	0,0477	0

Таблица 6. Значения плотности x_{0g} вычисленные по уравнению (22)

выводы

1. Реальные технологические процессы в промышленном производстве характеризуются непрерывным изменением воздействующих параметров и состояния. Как динамические системы они представляют собой бесконечную последовательность переходных процессов, при которых нет постоянных начальных значений. Каждое предыдущее значение параметров и

состояния является начальным для последующего их изменения, продолжительности переходных процессов соизмеримы, управляемый параметр следует рассматривать как сложную функцию от функций, зависящих от одного независимого аргумента – времени. Соотношение начальных значений и изменений параметров и состояния определяется двусторонним неравенством.

2. Получено уравнение потенциальных изменений на примере процесса смешения двух

потоков, на основании которого построено обобщенное дифференциальное уравнение в частных производных, описывающее динамику многопараметрического процесса с учетом чувствительности выходного параметра к изменению воздействующих и скоростей их изменений. Осуществлена проверка существования решения полученного уравнения и показано множество решений, зависящих от множества воздействующих параметров и множества их изменений.

3. Достоверность использованных при построении обобщенного дифференциального уравнения положений и реальность собственно дифференциального уравнения доказаны путем преобразований в классическое его однопараметрическое линейное дифференциальное уравнение при уменьшении отношения продолжительности изменения воздействующих параметров к продолжительности изменения выходного параметра, уменьшении числа воздействующих параметров до единицы, уменьшении отношения скорости изменения выходного параметра к скоростям изменений воздействующих параметров.

4. Приведены результаты использования построенного дифферен циального уравнения в частных производных для описания многоступенчатого многопараметрического процесса вымывания технологической жидкости при встречно-пересекающихся потоках.

СИСОК ЛИТЕРАТУРЫ:

1. Воронков И.М. Курс теоретической механики. – М.: Наука, 1965, 596с.

2. Шуп Т. Решение инженерных задач на ЭВМ. – М.: Мир, 1982, 295с.

3. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. – М.: Наука, 1971, 576с.

Моделирование термического разложения азида Каленский А.В., Кригер В.Г., Белобородов В.А., Звеков А.А. Кемеровский государственный университет Кемерово, Россия *kriger@kemsu.ru

В [1] был предложен и проанализирован механизм твердофазного разложения (TP) азида серебра (АС). По предложенному механизму проведен расчет кинетики ТР азида серебра при различных температурах. Рассчитанные характеристики процесса: стационарная скорость энергия активации. газовыделения, eë кинетические зависимости $N_2(t)$ хорошо совпадают с экспериментальными [2]. Сравнение расчетных и экспериментальных кривых газовыделения позволило уточнить параметры модели: эффективную массу зонной дырки $m_p = (3, 1 \pm 0, 1) \cdot m_0,$ термическую ширину $E_{o} = (1,8 \pm 0,06) \Im B$ запрещенной 30ны: и константу скорости реакции превращений локализованных на вакансии азид-радикалов в молекулярный азот $k_{14} = (3 \div 7) \cdot 10^5 \text{ c}^{-1}$ при T = 400 К, оценить положение уровня Ag^0 в $E_1 \approx (0,56 \pm 0,04)$ 3B. запрещенной зоне Предложенный механизм позволил с единой точки зрения и качественно и количественно объяснить результаты по исследованию кинетики изотермических TP режимов и электрофизических характеристик АС. В настоящей работе рассмотрено разложение кристаллов АС при наложении поля градиента температур. В работе [3] проведено экспериментальное исследование термического разложения нитевидных кристаллов AC размерами 10×0.1×0.03 мм при наложении в течении 20 минут поля градиента температур($\Delta T = 80-150$ градус/см). Экспериментально показано:

1. Максимум удержанного газа (при растворении) приходится на первую треть кристалла от холодного конца.