двигательная заторможенность, ректальная температура повышалась в среднем на 0,9-1,1°C. На протяжении последующих 3 суток у большинства экспериментальных животных наблюдалось снижение потребления жидкости. При вскрытии на 5-е сутки у части животных обнаруживались отдельные кровоизлияния в коже, перикарде, желудочно-кишечном тракте, головном и спинном мозге в виде мелких петехий. В указанный срок в периферической крови имело место снижение содержания как эритроцитов до 80.4%, так и лейкоцитов – до 61.7% (р>0.05) от уровня контроля. Уже с 10-х суток выявляется картина слабовыраженных морфологических нарушений: уменьшается число кровоизлияний, они имеют менее «яркий» характер. На 25-е сутки указанная тенденция получает дополнительное развитие, что проявляется в уменьшении числа петехий, приобретающих бледнорозовую окраску. На 60-е сутки морфологическая картина при вскрытии мало чем отличается от контроля. На протяжении всех сроков наблюдений в эксперименте отмечается изменение показателей ЧВФ в коже всех участков локализации. Так, уже сразу после окончания воздействия микроволн отмечается некоторое снижение ЧВФ в коже головы и спины, в то время как в коже живота данный показатель от контроля не отличается. В последующие сроки происходит некоторое снижение ЧВФ в коже всех участков локализации, достигавшее максимума на 10-е сутки. Так на 10-е сутки после окончания воздействия микроволн показатель ЧВФ составляет в коже головы и спины около 96%, в то время как в коже живота около 94% от уровня контроля (р<0,05). В последующие сроки происходит постепенное повышение указанного показателя, вместе с тем ЧВФ достигает уровня контроля на 60-е сутки только в коже спины, в то время как в коже головы и живота он несколько ниже исходного.

Полученные данные свидетельствуют о некотором изменении числа волосяных фолликулов кожи всех участков локализации при действии СВЧ-волн, достигающих максимального снижения на 10-е сутки после окончания воздействия. Данный показатель может быть рекомендован как возможный морфофункциональный критерий при оценке воздействия такого экстремального фактора окружающей среды, как микроволны термогенной интенсивности.

ИЗМЕНЕНИЯ СОСУДОВ МИКРОЦИРКУЛЯТОРНОГО РУСЛА, КАК МОРФОКОЛИЧЕСТВЕННЫЙ КРИТЕРИЙ ДЛЯ ОЦЕНКИ СТЕПЕНИ ИЗМЕНЕНИЙ СОСУДИСТОГО РУСЛА КОЖИ ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ ПРИ ВОЗДЕЙСТВИИ МИКРОВОЛН

Мельчиков А.С., Мельчикова Н.М., Рыжов А.И. Сибирский государственный медицинский университет, Томск

В доступной нам литературе, отсутствуют морфоколичественные данные об изменениях сосудистого русла кожи, при воздействии такого экстремально-

го фактора окружающей среды электромагнитной природы, как микроволны термогенной интенсивности. Все это и обусловило необходимость проведения нашего исследования.

Исследование проведено на 65 половозрелых морских свинках-самцах, массой 400-450 гр., из которых 35 были использованы в эксперименте, а 30 служили в качестве контроля. Содержание морских свинок проводилось в соответствии с правилами, принятыми Европейской конвенцией по защите позвоночных животных, используемых для экспериментальных и других научных целей (Страсбург, 1986). Экспериментальные животные подвергались воздействию микроволн (длина волны-12,6 см, частота 2375 $M\Gamma$ ц, плотность потока мощности -60 мBт/см², экспозиция-10 мин.). Перед проведением эксперимента морские свинки адаптировались к условиям лаборатории, с целью исключения стрессового фактора 3-5 раз подвергались «ложному» воздействию с включенной аппаратурой, но отсутствием самого излучения. В качестве генератора, источника микроволн, служил терапевтический аппарат «ЛУЧ-58». Облучение производилось в одно и то же время суток - с 10 до 11 часов в осеннее-зимний период с учетом суточной и сезонной радиочувствительности (Щербова Е.Н., 1984).Выведение животных из эксперимента и забор материала производился сразу, через 6 часов, на 1, 5, 10, 25 и 60-е сутки после окончания воздействия. Кусочки кожи были взяты из различных областей (голова (щека), спина, живот). Для гистологического изучения был использован материал, фиксированный в 12% нейтральном формалине, затем залитый в парафин, из которого изготавливались срезы толщиной 7 мкм, которые окрашивались по традиционной методике - гематоксилином и эозином. Состояние сосудистой системы кожи морфологически оценивали используя данные Д.П.Осанова (1990). На гистологических препаратах, в дерме подсчитывали количество всех сосудов микроциркуляторного русла и отдельно число нормальных, расширенных и суженных. При этом: к нормальным относили сосуды, ширина просвета которых равна толщине стенки; к суженным те, у которых ширина просвета меньше толщины стенок; к расширенным - сосуды, ширина просвета которых больше толщины стенки. По нашему мнению, соотношение нормальных, расширенных и суженных сосудов микроциркуляторного русла, выраженное в %, количественно характеризует состояние сосудистой системы дермы кожи после облучения. Все результаты обрабатывались по правилам параметрической статистики с использованием критерия Стьюдента, вычисляли средние значения и их стандартные отклонения. Достоверность различий между контрольными и опытными значениями принималась при вероятности Р<0,05 (Автандилов Г.Г., 1990). Проводился гематологический контроль (подсчет общего количества эритроцитов и лейкоцитов).

При микроскопическом исследовании гистологических препаратов со стороны кожи всех участков локализации уже сразу после окончания воздействия микроволн отмечается резкое увеличение числа расширенных сосудов микроциркуляторного русла, преобладающими над нормальными и суженными и пре-

вышающими 35% от общего числа сосудов в коже головы и живота, и составляющими около 30% в коже спины, что почти в 2 раза больше чем в контроле (р<0,05). В последующие сроки указанная тенденция (резкое увеличение числа расширенных сосудов микроциркуляторного русла) сохраняется, достигая максимума на 5-е сутки после окончания воздействии микроволн. В указанный срок количество расширенных сосудов микроциркуляторного русла превышает 45% от общего числа в коже головы и живота, и составляет около 40% в коже спины (р<0.05). В последующие сроки происходит постепенное уменьшение числа расширенных сосудов микроциркуляторного русла. Так, на 25-е сутки после окончания воздействия СВЧ-излучения число расширенных сосудов микроциркуторного русла в коже всех участков локализации лишь незначительно превышает 20% от общего числа, в то же время превышая показатели контроля (p<0,05). На 60-е сутки после окончания воздействия микроволн количество расширенных сосудов не достигает уровня контроля в коже всех участков локализации.

Полученные данные свидетельствуют о существенном увеличении количества расширенных сосудов микроциркуляторного русла кожи различных участков локализации на протяжении всех сроков наблюдений при воздействии СВЧ-волн. Данный показатель может быть рекомендован как морфоколичественный критерий изменений сосудистого русла кожи при оценке воздействия такого экстремального фактора окружающей среды, как микроволны термогенной интенсивности, особенно с учетом возможности экстраполяции полученных экспериментальных данных на человека (Бонд В., 1971).

ИЗМЕНЕНИЯ КОЛИЧЕСТВА КЛЕТОЧНЫХ РЯДОВ ЭПИДЕРМИСА КОЖИ МОРСКИХ СВИНОК, КАК МОРФОФУНКЦИОНАЛЬНЫЙ КРИТЕРИЙ ПРИ ОЦЕНКЕ ВОЗДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Мельчиков А.С., Мельчикова Н.М., Рыжов А.И. Сибирский государственный медицинский университет, Томск

В доступной нам литературе, отсутствуют морфоколичественные данные об изменениях эпидермиса кожи, при воздействии экстремальных факторов окружающей среды электромагнитной природы, и, в частности, рентгеновских лучей. Все это и обусловило необходимость проведения нашего исследования.

Исследование проведено на 81 половозрелой морской свинке-самцах, массой 400-450 гр., из которых 51 была использована в эксперименте, а 30 — служили в качестве контроля. Содержание морских свинок проводилось в соответствии с правилами, принятыми Европейской конвенцией по защите позвоночных животных, используемых для экспериментальных и других научных целей (Страсбург, 1986). Перед проведением эксперимента морские свинки адаптировались к условиям лаборатории с целью исключения стрессового фактора 3-5 раз подвергались

«ложному» воздействию с включенной аппаратурой. но отсутствием самого излучения. Экспериментальные животные подвергались воздействию однократного общего рентгеновского излучения (доза-5 Гр, 0,64 Гр/мин., фильтр-0,5 мм Си, напряжение-180 кВ, сила тока-10 мА, фокусное расстояние-40 см). В качестве источника рентгеновского излучения был использован рентгеновский аппарат «РУМ-17». Облучение производилось в одно и то же время суток - с 10 до 11 часов в осеннее-зимний период с учетом суточной и сезонной радиочувствительности (Щербова Е.Н., 1984). Выведение животных из эксперимента и забор материала производился сразу, через 6 часов, на 1, 5, 10, 25 и 60-е сутки после окончания воздействия. Кусочки кожи были взяты из различных областей (голова (щека), спина, живот). Для гистологического изучения был использован материал, фиксированный в 12% нейтральном формалине, затем залитый в парафин, из которого изготавливались срезы толщиной 7 мкм, которые окрашивались по традиционной методике - гематоксилином и эозином. По данным литературных источников известно, что в коже часто проводят измерение толщины эпителиального пласта (Панченко К.М., 1978). Однако измерение толщины эпителиального пласта не всегда дает истинное представление о реакциях кожи. При получении срезов часто имеют место артефакты, так как происходит деформация эпидермиса в результате фиксации, а также на других этапах изготовления гистологических препаратов. В то же время одним из наиболее информативных показателей состояния эпителия является количество клеточных рядов (Мокин Ю.Н., 1984). Данный метод был применен и в нашем исследовании. При подсчете мы исходили из того положения, что волосяные фолликулы в коже животных расположены вертикально по плоскости среза и являются естественными ограничителями участков эпидермиса, заключенного между двумя линейно расположенными волосяными фолликулами. Клеточные ряды подвергались измерению, как в минимальном по толщине участке эпидермиса, так и максимальном. Подобный подсчет производился с учетом количества клеточных рядов базального и шиповатого слоев эпидермиса в нескольких полях зрения, причем число участков подсчета было не менее 30 в коже каждого экспериментального животного. При этом нами была использована формула, предложенная А.А.Брауном (1959). Сравнение средних величин количества клеточных рядов осуществлялось в максимальном и минимальном по толщине участках эпидермиса в контроле и опыте. Все результаты обрабатывались по правилам параметрической статистики с использованием критерия Стьюдента, вычисляли средние значения и их стандартные отклонения. Достоверность различий между контрольными и опытными значениями принималась при вероятности Р<0,05 (Автандилов Г.Г., 1990). Проводился гематологический контроль (подсчет общего количества эритроцитов и лейкоцитов).

При микроскопическом исследовании гистологических препаратов со стороны кожи всех участков локализации отмечается изменение вышеуказанного морфоколичественного показателя на протяжении всех сроков наблюдения, достигавших максимального