лученные значения $T_{20\%}^{meop}$ ложатся в интервал экспериментально определенных температур протекания термоокислительной деструкции – 673-763 К [4]. Как показали измерения ТГА для композитов на основе фенилона, изменение Δ_f в пределах 2,29-2,57 приводит к вариации $T_{20\%}^{3\kappa cn}$ примерно на 85 К.

Таким образом, полученные результаты показали зависимость $T_{20\%}$ от структуры расплава, характеризуемой размерностью Δ_f . Увеличение T_c и снижение Δ_f приводит к росту $T_{20\%}$.

СПИСОК ЛИТЕРАТУРЫ

1. Берштейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л., Химия, 1990, 256 с.

2. Баланкин А.С. Синергетика деформируемого тела. М., Изд-во Министерства обороны СССР, 1991, 404 с.

3. Шогенов В.Х., Ахкубеков А.А., Ахкубеков Р.А. Метод дробного дифференцирования в теории броуновского движения. Известия ВУЗов. Северо-Кавказский регион, 2004, № 1, с. 46-50.

4. Буря А.И., Чигвинцева О.П., Сучилина-Соколенко С.П. Полиарилаты. Синтез, свойства, композиционные материалы. Днепропетровск, Наука и образование, 2001, 152 с.

СООТНОШЕНИЕ ПРОСТРАНСТВЕННОГО И ВРЕМЕННОГО БЕСПОРЯДКА ПРИ ТЕПЛОВОМ СТАРЕНИИ ПОЛИЭТИЛЕНА

Долбин И.В., Афаунова З.И., Козлов Г.В. Научно-исследовательский институт прикладной математики и автоматизации КБНЦ РАН, Кабардино-Балкарский государственный университет

Сравнение термоокислительной деструкции ряда полиэтиленов в процессе теплового старения при температурах T_{cm} ниже и выше температуры плавления $T_{n\pi}$ (353 и 463 К, соответственно) обнаружило большое различие скоростей окисления (на 2-3 порядка) [1]. Было показано, что это различие обусловлено увеличением порядка реакции в ~ 5 раз при T_{cm} =463 К по сравнению с T_{cm} =353 К и наличием временного (энергетического) беспорядка структуры наряду с пространственным. Цель настоящего сообщения – количественная оценка степени влияния указанных типов беспорядка на скорость термоокислительной деструкции полиэтилена высокой плотности (ПЭВП).

Как известно [2], фрактальные реакции описываются следующим простым соотношением:

(1)

 $k \sim t^{-h}$.

где k – скорость реакции, t – ее продолжительность, h – показатель неоднородности (0< $h\leq$ 1), обращающийся в ноль в случае классического поведения (реакции в гомогенных или евклидовых средах) и тогда k=const.

Показатель *h* связан с эффективной (учитывающей наличие временного и/или энергетического беспорядка) спектральной размерностью d'_s следующим уравнением [2]:

$$d'_{s} = 2(1-h).$$
 (2)

Рисунок 1. Зависимость k(t) в двойных логарифмических координатах при T_{cm}=353 K (1) и 463 K (2) для ПЭВП

Для экспериментального определения h была определена скорость изменения k относительно тангенса диэлектрических потерь tg $\delta/tg \delta_0$ (где tg δ и tg δ_0 – соответственно значения для состаренного и исходного образцов) как функция t. На рис. 1 приведены зависимости k(t) в двойных логарифмических координатах. которые позволяют определить величину h из наклона линейных графиков согласно (1). Эти значения приведены в табл. 1, откуда следует их существенное различие для T_{cm}=353 и 463 К. Если для *T_{cm}*=353 К величина *h* относительно невелика и близка к соответствующей величине для евклидовых (гомогенных) сред, то при T_{cm}=463 К этот показатель близок к величине для полностью неупорядоченных сред. Далее можно рассчитать величины d_s согласно (2) для обеих T_{ст}, которые также приведены в табл. 1. Переход от аморфно-кристаллического состояния (*T_{cm}*=353 К) к расплаву (*T_{cm}*=463 К) приводит к резкому снижению d'_s , обусловленному ростом степени гетерогенности последнего. Тогда d_s=1,46, т.е., практически точно совпадает с величиной d's. Это указывает, что при T_{cm}=353 К, т.е., при T_{cm}<T_{nn}, процесс термоокислительной деструкции контролируется только пространственным (структурным) беспорядком. Для расплава d_s можно принять равной соответствующей размерности для линейной макромолекулы, т.е., $d_s=1,0$, а структурную величину d'_s ($d'_{s_{cmn}}$) можно оценить из уравнения [1]:

$$5d_{s_{cmp}} = 2(2\Delta_f - 3),$$
 (3)

где Δ_f – фрактальная размерность макромолекулярного клубка в расплаве, равная d_f . Тогда $d_{s_{cmp}}^{'}=0,96$ и близка к принятой выше d_s (табл. 1). Определить величину h, соответствующую пространственному беспорядку в расплаве, можно из уравнения (2) при условии $d_s^{'}=d_{s_{cmp}}^{'}$ (h=0,520).

Как показано в [3], порядок реакции χ связан с показателем *h* следующим уравнением:

 $\chi = \frac{2-h}{1-h} \,. \tag{4}$

Расчет порядка реакции χ_{np} , обусловленного пространственным беспорядком, согласно (4) при *h*=0,293 для T_{cm}=353 К и h=0,520 согласно (2) и условию $d'_{s} = d'_{s_{cmn}}$ для T_{cm} =463 К показал, что эти величины χ_{пр} равны 2,36 и 3,08, соответственно. Иначе говоря, повышение степени пространственного беспорядка, характеризуемое увеличением h от 0,263 до 0,520 приводит к росту χ_{np} от 2,36 при T_{cm} =353 К до 3,08 при T_{cm} =463 К. Поскольку при T_{cm} =353 К d'_{s} =d_s, т.е., временной беспорядок отсутствует, то общий порядок реакции χ равен пространственному: $\chi = \chi_{np}$. Для второй из указанных температур теплового старения d_s=1 и $d_s = 0,19$, т.е., $d_s \neq d_s$ и величина χ , рассчитанная из уравнения (4), равна 11,49. Отметим, что отношение величин у для T_{cm}=353 и 463 К равно 4,88, т.е., примерно 5, что соответствует данным [1]. Очевидно, что при *T_{cm}>T_{nn}* порядок реакции χ контролируется как пространственным (χ_{nv}), так и временным (χ_{sv}) беспорядком, что соответствует известным данным [2] и определяется теоремой о субординации [4]:

$$\chi = \chi_{np} \chi_{sp} . \tag{5}$$

Из уравнения (5) следует $\chi_{ep}=3,73$, т.е., временной беспорядок оказывает даже большее влияние на χ при $T_{cm}=463$ К, чем пространственный.

Укажем, что появление временного беспорядка изменяет тип блуждания, которым моделируется траектория движения молекулы оксиданта. Для $T_{cm} < T_{nn}$ эта траектория моделируется случайным блужданием, а для $T_{cm} > T_{nn}$ – случайным блужданием с непрерывным временем. Иначе говоря, в последнем случае по существу вводится фрактальное множество времен событий [4].

Таблица 1. Сравнение характеристик термоокислительной деструкции ПЭВП ниже (353 К) и выше (463 К) температур плавления

<i>Т_{ст}</i> , К	h	d_s	D_s	$d'_{s_{cmp}}$	χ_{np}	Хвр	χ
353	0,263	1,47	1,46	1,46	2,36	1,0	2,36
463	0,905	0,19	1,0	0,96	3,08	3,73	11,49

СПИСОК ЛИТЕРАТУРЫ

1. Козлов Г.В., Долбин И.В., Машуков Н.И. Фрактальная модель термоокислительной деструкции в неупорядоченных средах. Вестник КБГУ. Химические науки, 2003, № 5, с. 74-79.

2. Копельман Р. Динамика экситонов, напоминающая фрактальную: геометрический и энергетический беспорядок. В кн.: Фракталы в физике. Ред. Пьетронеро Л., Тозатти Э. М., Мир, 1988, с. 524-527.

3. Kopelman R., Klymko P.W., Newhouse J.S., Anacker L.W. Reaction kinetics on fractals: Randomwalker simulations and exciton experiments. Phys. Rev. B, 1984, v. 29, \mathbb{N} 6, p. 3747-3748.

4. Блюмен А., Клафтер Дж., Цумофен Г. Реакции в фрактальных моделях неупорядоченных систем. В кн.: Фракталы в физике. Ред. Пьетронеро Л., Тозатти Э. М., Мир, 1988, с. 561-574.

ВЛИЯНИЕ СОДЕРЖАНИЯ К₂S НА СТРУКТУРУ И ЭЛЕКТРОПРОВОДНОСТЬ СТЕКОЛ СИСТЕМЫ КРО₃-К₂S

Зарецкая Г.Н. Сахалинский государственный университет, Южно-Сахалинск

В последнее время большое внимание уделяется созданию стеклообразных композиций с высокой ионной проводимостью для использования в качестве твердых электролитов для химических источников тока, необходимых при создании преобразователей